期刊文献+

基于有监督Topic Model的图像分类 被引量:1

Picture Classification Based on Supervised Topic Model
下载PDF
导出
摘要 近年来,以LDA为代表的话题模型在图像和文本处理中均得到了广泛的应用。与传统的机器学习方法相比,LDA模型具有参数少,表达能力强等优点,同时作为一种生成模型,它可以有效模拟人类学习的方式,便利地加入先验知识。有监督的LDA模型则将生成模型与判别模型结合在一起,是一种通用的分类方法。Dense-SIFT特征被作为底层特征,在词袋模型的框架下,以k-means算法构建词典,用有监督的LDA模型训练,并在通用的图像数据集上进行评测,根据评测结果证明其在图像分类任务中具有很好的性能。 In recent years, Topic models, which are represented by LDA, have been widely used in both image processing and text processing tasks. Compared with traditional machine learning methods, LDA model has less parameters, and a stronger ability to capture deep structure of data. Also, as a kind of generative model, LDA model can simulate the learning process of human, and is able to integrate priori knowledge easily. Supervised LDA (sLDA), which combines generative process and discriminative process, is a common model for classiifcation. Dense-SIFT is used as low-level features and k-means algorithm is applied to construct dictionary, then a classiifcation model is trained using sLDA, we evaluate this method on a populardataset, under the framework of bag-of-words, which proves that it works well on Image classiifcation tasks.
作者 付勋 宋俊德
机构地区 北京邮电大学
出处 《软件》 2013年第12期253-255,共3页 Software
关键词 图像分类 话题模型 有监督模型词 image classiifcation topic model supervised model
  • 相关文献

参考文献9

  • 1Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J], the Journal of machine Learning research, 2003, 3: 993-1022.
  • 2Bosch A, Zisserman A, Munoz X. Scene classification via pLSA[M]. Beijing: Computer Vision-ECCV 2006. Springer Berlin Heidelberg, 2006.
  • 3Blei D M, McAuliffe J D. Supervised topic models[J], arXiv preprint arXiv, 2010:1003.0783.
  • 4Jain A K, Murty M N, Flyrm P J. Data clustering: a review[J]. ACM computing surveys (CSUR), 1999, 31(3): 264-323.
  • 5Nowak E, Jurie F, Triggs B. Sampling strategies for bag-of-features image classification[M]. Graz: Computer Vision-ECCV 2006. Springer Berlin Heidelberg, 2006.
  • 6Mikolajczyk K, Leibe B, Schiele B. Local features for object class recognition[A]. Computer Vision, 2005. ICCV 2005[C]. Beijing: Tenth IEEE International Conference on. IEEE, 2005.1792-1799.
  • 7Lowe D G. Distinctive image features from seale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91 - 110.
  • 8Fei-Fei L, Perona P. A bayesian hierarchical model for learning natural scene categories[A]. IEEE.Computer Vision and Pattern Recognition, 2005. CVPR 2005[C]. San Diego: IEEE Computer Society Conference on. IEEE, 2005.524-531.
  • 9Russell B C, Torralba A, Murphy K P, et al. LabelMe: a database and web-based tool for image annotation[J]. International journal of computer vision, 2008, 77(1-3): 157-173.

同被引文献35

  • 1刘振东,刘正士.输电线找形分析的非线性有限元法[J].新型工业化,2013,2(7):50-58. 被引量:4
  • 2T. Yang."Computational Verb Cellular Networks: Part II-One- Dimensional Computational Verb Local Rules". International Journal of Computational Cognition . 2009
  • 3YANG Tao.Computational verb cellular networks:Part I–A new paradigm of human social pattern formation. International Journal of Computational Cognition . 2009
  • 4LIN Xiaoli,YANG Tao.Formation of Circumgyration Patterns in Twodimentional Computational Verb Cellular Networks. ICASID . 2010
  • 5WEN Kun,YANG Tao.Classification of Patterns Formed in Two-Dimensional Computational verb Cellular Networks. International Journal of Computational Cognition . 2010
  • 6WEN Kun,YANG Tao.New Patterns in Two-Dimensional Computational Verb Cellular Net Works. 2010 Anti-counterfeiting,Security,and Identification in Communication ASID .
  • 7LIN Xiao-li,Yang Tao.Formation of Vertical Dislocation Patterns in One-dimensional Computational Verb Cellular Networks. ICASID . 2009
  • 8YANG Tao.Computational verb cellular networks:Part III–Solutions of One-Dimensional computational verb cellular networks. International Journal of Computational Cognition . 2009
  • 9刘文华,刘焕芳,金瑾,殷艳.泄槽菱形冲击波水力特性的试验研究[J].中国农村水利水电,2010(11):111-113. 被引量:2
  • 10沈飞,魏彦玉,许雄,徐进,巩华荣,黄民智,宫玉彬,王文祥.140GHz菱形微带曲折线慢波结构行波管的模拟计算[J].强激光与粒子束,2012,24(1):139-141. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部