期刊文献+

基于纤维小体展示技术的酿酒酵母纤维素乙醇研究进展

Recent advances in cellulosic ethanol production using cellulosome-displayed Saccharomyces cerevisiae
原文传递
导出
摘要 利用联合生物加工工艺生产第二代燃料乙醇(纤维素乙醇)是国内外的研究热点.前期的研究结果表明,酿酒酵母分泌或展示非复合型纤维素酶体系的应用效果并不理想,而复合型纤维素酶体系(即纤维小体)因对纤维素的降解能力比非复合型纤维素酶体系更强,所以其在酿酒酵母细胞表面的组装研究受到越来越多的关注.目前,单支架和双支架纤维小体在酵母细胞表面的完全自组装以及多细胞协同参与的非完全自组装均已实现.纤维小体展示型酿酒酵母已能直接利用结晶型纤维素发酵生产乙醇,但由于降解模块的结构缺陷,纤维素乙醇的产量仍然偏低.本文对纤维小体的酵母展示技术及其在纤维素乙醇发酵中的应用研究进行了论述,并对该领域的发展方向进行了展望. It has become a research focus in the world that using consolidated bioprocessing to produce the second generation bioethanol (cellulosic ethanol). However, previous studies indicated that the non-complexed cellulase systems engineered in Saccharomyces cerevisiae did not work efficiently. During recent years, cell-surface assembly of complexed cellulase systems (cellulosomes) on S. cerevisiae has attracted continued interests, because of their greater abilities in cellulose hydrolysis than non-complexed cellulase systems. Up to now, the self-assembly and semi-self-assembly of celllulosomes using single scaffoldin or two scaffoldins have been achieved. The cellulosome-displayed yeast has been able to directly convert avicel to ethanol, but the productivity was still quite low because of some design flaws of cellulosome. In this paper, the methods for cellulosome assembly on yeast cell surface and their applications in cellulosic ethanol production are reviewed. Also, the prospects of this research field are given based on our analysis of the problems that still have not solved by the previous studies.
出处 《中国科学:化学》 CAS CSCD 北大核心 2014年第1期79-84,共6页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(21106007 21376023)资助
关键词 纤维小体 纤维素乙醇 酿酒酵母 联合生物加工工艺 cellulosome, cellulosic ethanol, Saccharomyces cerevisiae, consolidated bioprocessing
  • 相关文献

参考文献24

  • 1Fairley P. Introduction: Next generation biofuels. Nature, 2011, 474: S2-S5.
  • 2Fang X, Shen Y, Zhao J, Bao XM, Qu YB. Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol, 2010, 101: 4814-4819.
  • 3Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 2007, 315: 804-807.
  • 4Chen M, Zhao J, Xia LM. Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass Bioenergy, 2009, 33: 1381-1385.
  • 5Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev, 2002, 66: 506-577.
  • 6Lynd LR, van Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: An update. Curr Opin Biotechnol, 2005, 16: 577-583.
  • 7Nevoigt E. Process in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 2008, 72: 379-412.
  • 8Den Haan R, Rose SH, Lynd LR, van Zyl WH. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng, 2007, 9: 87-94.
  • 9Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engieered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol, 2004, 70: 1207-1212.
  • 10Fujita Y, Takahashi M, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol, 2002, 68: 5136-5141.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部