期刊文献+

氮掺杂氧化石墨催化苄胺氧化 被引量:1

Catalytic oxidation of benzylamine over N-stimulated graphite oxide
原文传递
导出
摘要 酰胺类化合物是重要的化工原料和生物医药合成的中间体,但其制备大部分需要使用贵金属催化剂,因此,发展廉价金属乃至非金属催化剂具有重大意义.本文使用化学气相沉积法合成了氮掺杂的层状氧化石墨材料,并将其应用于苄胺氧化反应中,实现了液相中酰胺合成的非金属催化过程.在水相中可以活化氧气较高产率地生成亚胺化合物N-苄亚甲基苄胺,并且成功实现了在氨水反应介质中高转化率和选择性地生成苯甲酰胺.此外,对反应中的影响因素进行了逐一研究,并从多方面探究了该反应中氨水的作用以及反应最可能的历程,提出了一条经过包括亚胺在内的多个中间产物的反应路径.本工作对于研究碳氢键的活化过程以及拓宽碳催化领域进行了有益的尝试. In this paper, we synthesized nitrogen-doped graphite oxide materials by the chemical vapor deposition method, and employed the cheap metal-free catalytic material to replace the noble metal catalysts that are currently used for the production of amide compounds. The metal-free catalytic reactions were performed in the liquid systems to synthesize benzamide by the oxidation of benzylamine. It is found that high selectivity and superior yield towards benzamide was achieved in the ammonia medium. In contrast, oxygen was activated in water to transform benzylamine to the imine compound. A variety of reaction parameters were investigated to study the reaction mechanisms as well as the role of ammonia. We conclude that the reaction process involves multiple elementary steps with the imine as the intermediate. Our work enriches the carbocatalysis knowledge and sheds lights on the C-H bond activation.
出处 《中国科学:化学》 CAS CSCD 北大核心 2014年第1期131-137,共7页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(20773121) 国家重点基础研究发展计划(973计划 2011CB201402)资助
关键词 氮掺杂 氧化石墨 碳催化 苄胺氧化 苯甲酰胺 N-stimulated, graphite oxide, carbocatalysis, oxidation of benzylamine, benzamide
  • 相关文献

参考文献32

  • 1Fujiwara H, Ogasawara Y, Yamaguchi K, Mizuno N. A one-pot synthesis of primary amides from aldoximes or aldehydes in water in the presence of a supported rhodium catalyst. Angew Chem Int Ed, 2007, 46: 5202-5205.
  • 2Owston NA, Parker AJ, Williams JMJ. Highly efficient ruthenium-catalyzed oxime to amide rearrangement. Org Lett, 2007, 9: 3599-3601.
  • 3Matteoli U, Scrivanti A, Beghetto V. Aminocarbonylation of phenylacetylene catalysed by palladium acetate in combination with (2-pyridyl)diphenylphosphine and methanesulfonic acid. J Mol Catal A-Chem, 2004, 213: 183-186.
  • 4Fung WK, Huang X, Man ML, Ng SM, Hung MY, Lin ZY, Lau CP. Dihydrogen-bond-promoted catalysis: Catalytic hydration of nitriles with the indenylruthenium hydride complex (η5-C9H7)Ru(dppm)H (dppm = bis(diphenylphosphino)methane). J Am Chem Soc, 2003, 125: 11539-11544.
  • 5Ren W, Yamane M. Carbamoylation of aryl halides by molybdenum or tungsten carbonyl amine complexes. J Org Chem, 2010, 75: 3017-3020.
  • 6Troisi L, Granito C, Rosato F, Videtta V. One-pot amide synthesis from allyl or benzyl halides and amines by Pd-catalysed carbonylation. Tetrahedron Lett, 2010, 51: 371-373.
  • 7Wu XF, Neumann H, Beller M. Development of a second generation palladium catalyst system for the aminocarbonylation of aryl halides with CO and ammonia. Chem-Asian J, 2010, 5: 2168-2172.
  • 8Kim JW, Yamaguchi K, Mizuno N. Heterogeneously catalyzed efficient oxygenation of primary amines to amides by a supported ruthenium hydroxide catalyst. Angew Chem Int Ed, 2008, 47: 9249-9251.
  • 9Gunanathan C, Ben-David Y, Milstein D. Direct synthesis of amides from alcohols and amines with liberation of H-2. Science, 2007, 317: 790-792.
  • 10Berger C, Song ZM, Li TB, Li XB, Ogbazghi AY, Feng R, Dai ZT, Marchenkov AN, Conrad EH, First PN, de Heer WA. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 2004, 108: 19912-19916.

同被引文献58

  • 1Kroto H W. Allaf A W. Balm S P. C60: Buckminsterfullerene[J]. Chern Rev.1991.9l(6): 1213.
  • 2Sumio Iijima. Helical microtubules of graphitic carbon[J]. Nature.1991.354(6348):56.
  • 3Novoselov K S. Geim A K. Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666.
  • 4Qing Zhang. Kathryn Scrafford , Mingtao Li , et al. Anomalous capacitive behaviors of graphene oxide based solid-state supercapacitors[J]. Nano Lett,2014.14(4):1938.
  • 5Amedea B Seabra , Amauri J Paula, Renata de Lima. et al. Nanotoxicity of graphene and graphene oxide[J]. Chern Res Toxicol.2014.27(2): 159.
  • 6Abhisek Gupta. Bikash Kumar Shaw, Shyamal K Saha. Bright green photoluminescence in aminoazobenzene-Iunc tionalized graphene oxide[J]. J Phys Chern C. 2014, 118 (13) : 6972.
  • 7Wei Ning , Lv Cunjing , Xu Zhiping. Wetting of graphene oxide: A molecular dynamics study[J]. Langmuir,2014,30 (12) : 3572.
  • 8Adhikari Bimalendu , Abhijit Biswas. Graphene oxide-based hydrogels to make metal nanoparticle-containing reduced graphene oxide-based functional hybrid hydrogels[J]. ACS Appl Mater Interfaces.2012.4(10) :5472.
  • 9Viskadouros G, Stylianakis M M, Kymakis E, et al. Enhanced field emission from reduced graphene oxide polymer composites[J]. ACS Appl Mater Interfaces.2014,6(1) :388.
  • 10Tang X Z, Cao Z, Zhang H B. Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step ap proach[J]. Chern Commun,2011 ,47(11): 3084.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部