期刊文献+

硅片及其太阳电池的光衰规律研究 被引量:4

Study on light-induced degradation of silicon wafers and solar cells
原文传递
导出
摘要 采用氙灯模拟太阳光源,将光强调至1000 W/m2,研究常规太阳能级单晶硅片、多晶硅片和物理提纯硅片的原片、去损减薄片、热氧化钝化片、双面镀氮化硅(SiN x:H)膜钝化片、碘酒钝化片以及太阳电池的光衰规律.利用WT-2000少子寿命测试仪以及太阳电池I-V特性测试仪分别对硅片的少子寿命和太阳电池的I-V特性参数随光照时间的变化进行了测试.结果表明:所有硅片以及太阳电池在光照的最初60 min内衰减很快随后衰减变慢,180 min之后光衰速率变得很小,几乎趋于零. In this paper, the laws of light-induced degradation (LID) in silicon wafers and solar cells are investigated by using xenon lamp as light source. There are tested 15 types of the silicon wafers contain the including primary wafer, chemical thinned wafer, thermal oxidation passivation wafer, passivation SiNx : H wafer deposited by plasma enhanced chemical vapor deposition, iodine passivation wafers of three different types of silicons: B-doped CZ-Silicon, B-doped Multicrystalline (MC) silicon, and B-doped Upgraded-Metallurgical-grade (UMG) silicon. There are tested 3 types of silicon solar cells: CZ solar cell, MC solar cell, and UMG solar cell. The light intensity is 1000 W/m2 in test. By using WT-2000 tester and solar cells I-V tester, the variations of minority carrier lifetimes of silicon wafers and the I-V characteristic parameters of solar cells with time of light exposure are tested and recorded. Finally the law of LID is found. Under our light condition (light source is a xenon lamp with a light intensity of 1000 W/m2), all kinds of silicon wafers and solar cells are degraded rapidly within the first 60 min, then slowly until the 180 min, finally the rate tends to 0. The LID becomes very slight after 180 min lighting.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第2期415-420,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50802118) 广东省战略性新兴产业核心技术攻关项目(批准号:2011A032304001) 中央高校基本研究经费青年教师培育项目(批准号:11lgpy40)资助的课题~~
关键词 光致衰减 少子寿命 太阳电池 silicon, light-induced degradation, minority carrier lifetime, solar cells
  • 相关文献

参考文献3

二级参考文献68

共引文献189

同被引文献44

  • 1顾锦华,钟志有,何翔,孙奉娄,陈首部.有机太阳能电池内部串并联电阻对器件光伏性能的影响[J].中南民族大学学报(自然科学版),2009,28(1):57-61. 被引量:13
  • 2Lee Y J, Tseng H C, Kuo H C, Wang S C, Chang C W, Hsu T C, Yang Y L, Hsieh M H, Jou M J, Lee B J 2005 IEEE Photonics Technol. Lett. 17 1041.
  • 3Windisch R, Rooman C, Meinlschmidt S, Kiesel P, Zipperer D, Dohler G H, Drtta B, Kuijk M, Borghs G, Heremans P 2001 Appl. Phys. Lett. 79 2315.
  • 4Yamakoshi S, Hasegawa O, Hamaguchi H, Abe M, Yamaoka T 1977 Appl. Phys. Lett. 31 627.
  • 5Chitnis A, Sun J, Mandavilli V, Pachipulusu R, Wu S, Gaevski M, Adivarahan V, Zhang J P, Khan M A, Sarua A, Kubal M 2002 Appl. Phys. Lett. 81 3491.
  • 6Cao X A, LeBoeuf S F, Rowland L B, Yan C H, Liu H 2003 Appl. Phys. Lett. 82 3614.
  • 7Pavei M, Manfredi M, Salviati G, Armani N, Rossi F, Meneghesso G, Levada S, Zanoni E, Du S, Eliashevich I 2004 Appl. Phys. Lett. 84 3403.
  • 8Chang S J, Chang C S, Su Y K 1997 IEEE Photon. Technol. Lett. 9 1822184.
  • 9Sugawara H, Itaya K, Hatakoshi G 1994 Jpn J. Appl. Phys. 33 619526198.
  • 10Chen Y X, Zheng W H, Chen W, Chen L H, Tang Y D, Shen G D 2010 Acta Phys. Sin. 59 8083 (in Chinese).

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部