期刊文献+

基于改进局部切空间排列的流形学习算法 被引量:9

Manifold Learning Algorithm Based on Modified Local Tangent Space Alignment
下载PDF
导出
摘要 局部切空间排列是一种广受关注的流形学习算法,其具备实现简单、全局最优等特点,但其难以有效处理稀疏采样或非均匀分布的高维观测数据。针对这一问题,该文提出一种改进的局部切空间排列算法。首先,提出一种基于L1范数的局部切空间估计方法,由于同时考虑了距离和结构因素,该方法得到的切空间较主成分分析方法更为准确。其次,在坐标排列步骤为了减小排列误差,设计了一种基于流形结构的加权坐标排列方案,并给出了具体的求解方法。基于人造数据和真实数据的实验表明,该算法能够有效地处理稀疏和非均匀分布的流形数据。 The Local Tangent Space Alignment (LTSA) is one of the popular manifold learning algorithms since it is straightforward to implementation and global optimal. However, LTSA may fail when high-dimensional observation data are sparse or non-uniformly distributed. To address this issue, a modified LTSA algorithm is presented. At first, a new L1 norm based method is presented to estimate the local tangent space of the data manifold. By considering both distance and structure factors, the proposed method is more accurate than traditional Principal Component Analysis (PCA) method. To reduce the bias of coordinate alignment, a weighted scheme based on manifold structure is then designed, and the detailed solving method is also presented. Experimental results on both synthetic and real datasets demonstrate the effectiveness of the proposed method when dealing with sparse and non-uniformly manifold data.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第2期277-284,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(40901216)资助课题
关键词 模式识别 流形学习 降维 局部切空间排列(LTSA) L1范数 Pattern recognition Manifold learning Dimensionality reduction Local Tangent Space Alignment (LTSA) L1 norm
  • 相关文献

参考文献6

二级参考文献29

  • 1张振跃,查宏远.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. 被引量:69
  • 2SHASHAHANI B M, LANDGREBE D A. The Effect of Unlabeled Samples in Reducing the Small Sample Size Problem and Mitigating the Hughes Phenomenon[J]. IEEE Transac- tions on Geoscience and Remote Sensing, 1994, 32 (5): 1087-1095.
  • 3ZHANG L, ZHONG Y, HUANG B, et al. Dimensionality Reduction Based on Clonal Selection for Hyperspeetral Imagery[J]. IEEE Transactions on Geoseienee and Remote Sensing, 2007, 45(12), 4172- 4185.
  • 4QIAN S E, CHEN G Y. A New Nonlinear Dimensionality Reduction Method with Application to Hyperspectral Image Analysis[C] // Proceedings of IEEE International Geoscienee and Remote Sensing Symposium. Barcelona: IEEE, 2008: 270-273.
  • 5BACHMANN C M. AINSWORTH T L, FUSINA R A. Improved Manifold Coordinate Representations of Large- scale Hyperspectral Scenes [J].IEEE Transactions on Geoscience and Remote Sensing, 2006, 44 ( 10 ) : 2786-2803.
  • 6BALASUBRAMANIAN M, Algorithm and Topological SCHWARTZ E. The Isomap Stability [J]. Science, 2002, 295(5552) : 7-7.
  • 7ZHANG T H, TAO D C. Patch Alignment for Dimensionality Reduction. Knowledge and Data Engineering [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1299-1313.
  • 8ROWEIS S T, SAUL L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding [J]. Science, 2000, 290(5500): 2323-2326.
  • 9BELKIN M, NIYOGI P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 10DONOHO D L, GRIMES C. Hessian Eigenmaps: Locally Linear Embedding Techniques for High-dimensional Data[J] Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5591-5596.

共引文献13

同被引文献50

  • 1钮永莉,陈水利.模糊C均值算法的改进[J].模糊系统与数学,2004,18(z1):304-308. 被引量:12
  • 2余肖生,周宁.高维数据降维方法研究[J].情报科学,2007,25(8):1248-1251. 被引量:23
  • 3ROWEIS S and SAUL L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 4BELKIN M and NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 5KIMA Kyoungok and LEE Daewon. Inductive manifold learning using structured support vector machine[J]. Pattern Recognition, 2014, 47(1): 470-479.
  • 6YANG Xin, FU Haoying, ZHA Hongyuan, et al. Semi- supervised nonlinear dimensionality reduction[C]. Proceedings of 32rd International Conference on Machine Learning, New York, 2006: 1065-1072.
  • 7HANSEN T J, ABRAHAMSEN T J, and HANSEN L K. Denoising by semi-supervised kernel PCA preimaging[J]. Pattern Recognition Letters, 2014, 49: 114-120.
  • 8WALDER C, HENAO R, Morten M?rup, et al. Semi-supervised kernel PCA[EB/OL]. http://arxiv.org/abs/ 1008.1398v1.pdf, 2014. 12.
  • 9HE Xiaofei, CAI Deng, and HAN Jiawei. Learning a maximum margin subspace for image retrieval[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(2): 189-201.
  • 10CAI Deng, HE Xiaofei, and HAN Jiawei. Semi-supervised discriminant analysis[C]. Proceedings of the 11th IEEE International Conference on Computer Vision. Piscataway, 2007: 1-7.

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部