期刊文献+

基于迭代扩展Kalman滤波建议分布和线性优化重采样的快速同步定位与构图 被引量:9

Fast Simultaneous Localization and Mapping Based on Iterative Extended Kalman Filter Proposal Distribution and Linear Optimization Resampling
下载PDF
导出
摘要 针对标准快速同步定位与构图(FastSLAM)方法中由于样本退化及贫化导致自主水下航行器(Autonomous Underwater Vehicle,AUV)及路标位置估计精度严重下降的问题,该文提出一种基于迭代扩展Kalman滤波(Iterative Extended Kalman Filter,IEKF)建议分布和线性优化重采样的FastSLAM方法,通过IEKF融入最新观测值从而降低样本退化,为了降低样本的贫化,将重采样过程中复制的样本与部分被抛弃的样本通过线性组合产生新样本。建立AUV的运动学模型、特征模型及传感器的测量模型,通过Hough变换提取特征构建全局地图,采用改进的FastSLAM方法基于海试数据进行了AUV同步定位与构图试验,结果表明该文所设计的方法能够有效避免样本的退化及贫化,提高了AUV及路标的位置估计精度;此外,一致性分析结果表明所设计算法具有长期一致性。 The location estimated accuracy of Autonomous Underwater Vehicle (AUV) and landmarks decrease because of the degeneracy and impoverishment of samples in standard Fast Simultaneous Localization And Mapping (FastSLAM) algorithm. A improved FastSLAM algorithm based on Iterative Extended Kalman Filter (IEKF) proposal distribution and linear optimization resampling is presented in order to solve this issue. The latest observation is integrated with IEKF in order to decrease the sample degeneracy while the new samples are produced by the linear combination of copied samples and some abandoned ones in order to reduce the sample impoverishment. The kinematic model of AUV, feature model and the measurement models of sensors are all established. And then features are extracted with Hough transform to build the global map. The experiment of the improved FastSLAM algorithm with trial data shows that it can avoid the degeneracy and impoverishment of samples effectively and enhance the location estimation accuracy of AUV and landmarks. Moreover, the consistency analysis showed that the method possesses the consistency of long term.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第2期318-324,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(E091002/50979017) 教育部高等学校博士学科点专项科研基金(20092304110008) 中央高校基本科研业务费专项资金(HEUCFZ 1026) 哈尔滨市科技创新人才研究专项资金(2012RFXXG083)资助课题
关键词 同步定位与构图 迭代扩展Kalman滤波建议分布 线性优化重采样 特征提取 Simultaneous Localization And Mapping (SLAM) Iterative Extended Kalman Filter (IEKF) proposal distribution Linear optimization resampling Feature extraction
  • 相关文献

参考文献4

二级参考文献50

  • 1杨争斌,郭福成,周一宇.迭代IMM机动目标被动单站跟踪算法[J].宇航学报,2008,29(1):304-310. 被引量:5
  • 2李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 3Newman E On the structure and solution of the simultaneous localization and map building problem [D]. Sydney: University of Sydney, 2000.
  • 4Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part Ⅰ[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-110.
  • 5Bailey T, Durrant-Whyte H. Simultaneous localization and mapping: Part Ⅱ[J]. IEEE Robotics and Automation Magazine, 2006, 13(3): 108-117.
  • 6Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem[C]. Proc of the AAAI National Conf on Artificial Intelligence. Edmonton, 2002: 593-598.
  • 7Montemerlo M, Thrun S, Koller D, et al. FastSLAM2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges[C]. Proc of the AAAI National Conf on Artificial Intelligence. Acapulco, 2003:1151-1156.
  • 8Bailey T, Nieto J, Nebot E. Consistency of the FastSLAM algorithm[C]. Int Conf on Robotics and Automation. Orlando, 2006: 424-429.
  • 9Wan E A, R van der Merwe. The unscented Kalman filter for nonlinear estimation[C]. Adaptive Systems for Signal Processing, Communications and Control Symposium. Lake Louise, 2000: 153-158.
  • 10Wang X, Zhang H. A UPF-UKF framework for SLAM[C]. Int Conf on Robotics and Automation. Roma, 2007: 1664- 1669.

共引文献87

同被引文献107

  • 1王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展[J].机器人,2004,26(4):380-384. 被引量:45
  • 2欧连军,邱红专,张洪钺.多个相关测量的融合算法及其最优性[J].信息与控制,2005,34(6):690-695. 被引量:13
  • 3赵树杰,赵建勋.信号检测与估计理论[M].北京:清华大学出版社,2004:425-440.
  • 4于金霞,蔡自兴,段琢华.基于激光雷达的环境特征提取方法研究[J].计算机测量与控制,2007,15(11):1550-1552. 被引量:6
  • 5WANG Heng, HUANG Shoudong, KHOSOUSSI K,et al.Dimensionality reduction for point feature SLAM problemswith spherical covariance matrices [ J ] . Automatica, 2015,51:149-157.
  • 6VALIENTE D, GIL A, FERNANDEZ L, et al. A compari-son of EKF and SGD applied to a view-based SLAM ap-proach with omnidirectional images[ J]. Robotics and Auton-omous Systems, 2014, 62(2) : 108-229.
  • 7STACHNISS C.机器人地图创建与环境探索[M].陈白帆,刘丽珏,译,北京:国防工业出版社,2013: 75.
  • 8HWANG S Y,SONG J B. Monocular vision-based global lo-calization using position and orientation of ceiling features[C]//IEEE International Conference on Robotics and Auto-mation (ICRA). Karlsruhe, Germany, 2013 : 3770-3775.
  • 9WURM K M,STACHNISS C, GRISETTI G. Bridging thegap between feature-and grid-based SLAM [ J ] . Robotics andAutonomous Systems, 2010, 58(2) : 140-148.
  • 10CHOI H,KIM D Y,HWANG J P,et al. Efficient simulta-neous localization and mapping based on ceiling-view : ceil-ing boundary feature map approach[ J]. Advanced Robotics,2012,26(5-6) : 653-671.

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部