期刊文献+

基于概率逼近的本原BCH码编码参数的盲识别方法 被引量:16

Blind Identification of Primitive BCH Codes Parameters Based on Probability Approximation
下载PDF
导出
摘要 针对本原BCH码编码参数的盲识别问题,该文提出了一种基于概率逼近的盲识别方法。首先,利用Gauss分布和Poisson分布逼近随机码字的根概率特性,确定了搜索BCH码长的门限;然后,通过分析本原域元素的检错能力及同构对域的影响,应用临近域对的方法确定编码域,提高了其识别能力;最后,给出识别生成多项式时的共轭根系表,从而减少了计算量。仿真结果表明,在较高的误码率下,该方法能快速地识别出BCH码编码所采用的编码参数。 To solve the issues of blind identification of primitive BCH codes encoding parameters, a novel identification algorithm with probability approximation is presented. Frist, by taking advantage of the approximation of random code words’ root probability character which uses Gaussian distribution and Poisson distribution, the thresholds for searching code length are structured. Second, though analyzing the checking ability of the primitive element and the impact of isomorphism on searching, the coding filed is determined by using the method of nearby fields pair which improves the performace of identification. Finally, the calculation is reduced by creating and using the conjugate roots table in the recognition of generator polynomial. Simulation results show that, the proposed algorithm achieves a significant improvement in identification probability even if in high BER situation.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第2期332-339,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60972072) 高等学校学科创新引智计划(B08038)资助课题
关键词 信道编码 BCH码 共轭根系 盲识别 Channel coding BCH codes Conjugate roots Blind identification
  • 相关文献

参考文献7

二级参考文献49

  • 1邹艳,陆佩忠.关键方程的新推广[J].计算机学报,2006,29(5):711-718. 被引量:62
  • 2刘玉君.信道编码[M].郑州:河南科学技术出版社,2007:129-180.
  • 3[1]Alouini, M. S., Goldsmith, A. J., Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques, IEEE Trans. Veh. Technol., 1999, 48(4): 1165-1181.
  • 4[2]Goldsmith, A. J., Chua, S. G., Variable-rate variable-power MQAM for fading channels, IEEE Trans. Comm.,1997, 45(10): 1218-1230.www.scichina.com
  • 5[3]Lee, J. M., Song, I., Jung, S. et al., A rate adaptive convolutional coding method for multicarrier DS/CDMA systems, MILCOM 2000, Los Angeles,October 2000, 932-936.
  • 6[4]Barton, M., Punctured convolutional codes for supporting PCS access to ATM networks, ICC'99, Vanconver, June1999, 1880-1884.
  • 7[5]Hagenauer, J., Rate-compatible punctured convolutional codes (RCPC Codes) and their application, IEEE Trans.Comm., 1988, 36(4): 389-400.
  • 8[6]Cain, J. B., Clark, G. C., Geist, J. M., Punctured convolutional codes of rate(n - 1)/n and simplified maximum likelihood decoding, IEEE Trans Inform Theory, 1979, 25(1): 97-100.
  • 9[7]Begin, G., Haccoun, D., High-rate punctured convolutional codes: structure properties and construction techniques,IEEE Trans. Comm., 1989, 37(11): 1381-1385.
  • 10[8]McEliece, R. J., The algebraic theory of convolutional codes, in Handbook of Coding Theory, Amsterdam: Elesevier, 1999.

共引文献148

同被引文献118

  • 1李开丁.关于n个独立同分布的指数分布的最值问题的期望和方差[J].大学数学,2005,21(4):125-127. 被引量:2
  • 2刘玉君,严玉平.有限域上RS码特征的研究[J].信息工程大学学报,2007,8(1):64-67. 被引量:7
  • 3王新梅,肖国镇.纠错码-原理与方法[M].西安:西安电子科技大学出版社,2006.
  • 4Couvreur A, Gaborit P, Gaut|fier-Umafia V, et al: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes[J]. Designs, Codes and Cryptography, 2014, 73(2): 641 666.
  • 5Lin Sire and Costello D J. Error Control Coding [M]. 2nd Edition, London, UK: Prentice Hall, 2004: 153-175.
  • 6Tilavat V trod Shukla Y. Simplification of procedure for decoding Reed-Solomon codes using various algorithms: an introductory survey[J]. International Joual of Engineering Development and Research, 2014, 2(1): 279 283.
  • 7Wachter-Zeh A, Zeh A, and Bossert M. Decoding interleaved Reed-Solomon codes beyond their joint error-correcting capability[J]. Designs, Codes and CrgptogTphy, 2014, 71(2): 261-281.
  • 8Boito P. The Euclidean algorithm[J]. Structured Matrix Based Methods for Approa:imate Polynomial, 2009, 15(1): 45 58.
  • 9Park J I and Lee H. Area-efficient truncated Berlekamp- Massey arclfitecture for Reed-Solomon decoderIJ]. Electronics Letters, 2011, 47(4): 241-243.
  • 10Chen Y H, Truong T K, Chang Y, et al: Algebraic decoding of quadratic residue codes using Berlekamp-Massey algorithm[J]. Journal of InfoTwmtion Science and Engineering 2007, 23(1): 127-145.

引证文献16

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部