期刊文献+

一种用于隐私保护关联规则挖掘的平均信息分布聚类混合算法

Hybrid Algorithm of Average Information Distributed Clustering for Privacy Protection Association Rules Mining
下载PDF
导出
摘要 针对现有的隐私保护关联规则挖掘算法无法满足效率与精度之间较好折中的问题,提出了一种平均信息分布聚类混合算法AIDCH(The average information distributed clustering hybrid algorithm).算法建立了关联规则向量,在其中用到了信息论方面的内容.计算信息源各个特征的次数积累关联,提取一种潜在的明显特征,以邻域潜在的特征作为聚类对象进行聚类,引入数据挖掘关联本体概念,在非单调性约束的条件下进行挖掘,克服由隐私保护带来的关联空间数据弱化的弊端.实验表明,该算法在保护隐私的情况下,能够获得精度和效率之间较好的折中,具有一定的实用价值. To solve the problem that the existing privacy preserving association rule mining algorithm cannot meet better trade;off between efficiency and accuracy, the paper proposes average information distributed clustering hybrid algorithm. The algorithm creates a vector of association rules, which uses content of information theory. Accumulation of calculation information source the number of times and extraction obvious features of a potential, the potential characteristics of the neighborhood as clustering object clustering, and the introduction of data mining association ontology concept, digging under the conditions of the non-monotonicity constraint, to overcome the weakening drawbacks associated space data by the Privacy. The experiments show that the algorithm can obtain a good tradeoff between accuracy and efficiency in the case of the protection of privacy.
出处 《微电子学与计算机》 CSCD 北大核心 2014年第2期168-172,共5页 Microelectronics & Computer
基金 河南省重点科技攻关项目(102102210265) 河南省基础与前沿研究项目(132300410400) 河南省信息技术教育研究规划项目(ITE12064)
关键词 隐私保护 关联规则挖掘 关联本体 潜在特征提取 聚类 privacy protection association rules mining correlation ontology potential feature extraction cluster
  • 相关文献

参考文献13

  • 1Huang Liming,Zhang Chao,Song Jinling. How to select optimal K-value for K-anonymity model[J].JCIT,2013,(01):811-819.
  • 2Zhang Haitao,Xu Liang,Huang Huihui. Min-ing sequential patterns from anonymous datasets for LBS users privacies protection[J].JCIT,2013,(02):77-86.
  • 3刘峰,薛安荣,王伟.一种隐私保护关联规则挖掘的混合算法[J].计算机应用研究,2012,29(3):1107-1110. 被引量:12
  • 4Zhu Bin,Liao Junguo,He Yong. Selectively dis-closing sensitive attributes in digital certificate for pri-vacy protection[J].IJACT,2013,(02):755-736.
  • 5Luo Wenjun,Liu Lu,Yuan Shumei. Batch veri-fication of the data integrity in cloud computing[J].JDC T A,2012,(15):373-380.
  • 6Deng Zhijuan,Zhong Shaojun. A kind of text classifica-tion design on the basis of natural language processing[J].IJACT,2013,(01):668-677.
  • 7Wu Fangjun. Scale-free characteristic in open source software:an empirical case study[J].IJACT,2013,(01):792-799.
  • 8Andy S Y Lai,POON Y C. i-Questionnaire-A Soft-ware Service Tool for Data Analysis in e-Business[J].IJIPM,2013,(01):1-9.
  • 9金菁.基于改进的聚类平均信息量文本数据挖掘算法研究[J].计算机应用研究,2012,29(3):981-983. 被引量:3
  • 10Somboon Anekritmongkol,Kulthon Kasemsan. SQL model in language encapsulation and compression tech-nique for association rules mining[J].IJIPM,2013,(01):65-75.

二级参考文献29

  • 1何兴无.用户兴趣实例模型与K_means算法的改进[J].重庆师范大学学报(自然科学版),2006,23(2):38-41. 被引量:4
  • 2李程雄,丁月华,文贵华.SVM-KNN组合改进算法在专利文本分类中的应用[J].计算机工程与应用,2006,42(20):193-195. 被引量:23
  • 3张鹏,童云海,唐世渭,杨冬青,马秀莉.一种有效的隐私保护关联规则挖掘方法[J].软件学报,2006,17(8):1764-1774. 被引量:53
  • 4RUNKLER T A, BEZDEK J C. Web mining with relational clustering [ J]. International Journal of Approximate Reasoning,2010,32 (2-3) :217-236.
  • 5HUANG J Z, NG M K, RONG Hong-qiang,et al. Automated variable weighting in K-means type clustering [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(5) :657-668.
  • 6DEMIR B ,ERTURK S. lqyperspectral image classification using rele- vance vector machines [ J]. IEEE Geoscience and Remote Sen- sin9 Letters,2007,4(4) :586-590.
  • 7ESTEVEZ P A, TESMER M, PEREZ C A, et al. Normalized mutual information feature selection [ J]. IEEE Tmns on Neural Netw, 2009,20(2) : 189-201.
  • 8ZHANG Wen, YOSHIDA T, TANG Xi-jin. Text classification based on multi-word with support vector machine [ J ]. Knowledge-Based. Systems,2008,21 (8) :879-886.
  • 9AGRAWAL R, SRIKANT R. Privacy-preserving data mining [ C ]// Proc of ACM SIGMOD Conference on Management of Data. 2000:439- 450.
  • 10KANTARCIOGLU M, CLIFTION C. Privacy-preserving distributed mining of association rules on horizontally partitioned data [ J]. IEEE Trans on Knowledge and Data Engineering,2004,16 (9) :1026- 1037.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部