期刊文献+

基于再入轨迹和气动热环境的返回舱烧蚀研究 被引量:5

Research on Ablation for Crew Return Vehicle Based on Re-entry Trajectory and Aerodynamic Heating Environment
原文传递
导出
摘要 针对再入全过程合理预测热防护罩表面材料烧蚀深度和温度的动态变化问题,提出融合再入轨迹、气动热以及Newton-Raphson和三对角矩阵算法(TDMA)构建动态烧蚀的方法。该方法建立直入式和跳跃式三自由度再入轨迹,应用修正的牛顿流体理论估算气动参数,以及修正的Fay-Riddell和Sutton-Grave理论计算驻点区域的热流密度,利用一维非线性热传导方程模拟了热防护材料的烧蚀过程。仿真结果表明:此方法实现了再入全过程热防护材料烧蚀深度和温度连续动态变化的预测,同样适用于更为复杂结构飞行器的动态烧蚀预测,与热平衡积分法(HBI)相比其结果可靠合理,为进一步优化热防护系统(TPS)提供了一定的参考依据。 The ablation of a heat shield subjected to dynamic changes of the surface material depth and temperature can be reasonably predicted in the whole re-entry process. The approach of constructing a dynamic ablation process is presented by combining the reentry trajectory and aerodynamic heat with Newton-Raphson and tridiagonal matrices (TDMA) algorithms. A three degrees of freedom direct and skip re-entry trajectory model is established. The modified Newtonian flow theory,Fay-Riddell and Sutton-Grave theory are adopted to calculate respectively the aerodynamic parameters and stagnation heat flux. A one dimensional nonlinear heat conduction model is employed to simulate the process of thermal protective material abla- tion. The results of ablation prediction demonstrate that continuous dynamic change of the surface material depth and the temperature can be realized. The proposed method can be applied to more complicated structures of the flight vehicles and the results of it are shown to be reliable and reasonable by comparing them with those of the heat balance integral (HBI) method. This study provides a reference for further optimization of the design of thermal protection systems (TPS).
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第1期80-89,共10页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61174053) 高等学校博士学科点专项科研基金(20100172110023)~~
关键词 返回舱 再入 气动热 烧蚀 有限元法 crew return vehicle re-entry aerodynamic heating ablation finite element method
  • 相关文献

参考文献22

  • 1Greathouse J S,Kirk B S,Lillard R P. Crew exploration vehicle (CEV) crew module shape selection and CEV aeroscience project overview,AIAA-2007-0603[R].Reston:AIAA,2007.
  • 2Berry S A,Horvath T J,Lillard R P. Aerothermal testing for project orion crew exploration vehicle,AIAA2009-3842[R].Reston:AIAA,2009.
  • 3吴振强,程昊,张伟,李海波,孔凡金.热环境对飞行器壁板结构动特性的影响[J].航空学报,2013,34(2):334-342. 被引量:40
  • 4Robinson J S,Wurster K E,Mills J C. Entry trajectory and aeroheating environment definition for capsule-shaped vehicles[J].{H}Journal of Spacecraft and Rockets,2009,(1):74-86.
  • 5Engel C D,Praharaj S C. MINIVER upgrade for the AVID system,vol.I:LANMIN user's manual.NASA CR-172212[R].1983.
  • 6Subrahmanyam P. High-fidelity aerothermal engineering analysis for planetary probes using DOTNET framework and OLAP cubes database[J].International Journal of Aerospace Engineering,2009,(1):1-21.
  • 7Otero R E,Braun R D. The planetary entry systems synthesis tool:a conceptual design and analysis tool for EDL systems[A].2010.1-16.
  • 8Park C. Stagnation-region heating environment of the Galileo probe[J].{H}Journal of Thermophysics and Heat Transfer,2009,(3):417-424.
  • 9Anderson J D. Hypersonic and high temperature gas dynamics[M].{H}New York:McGraw-Hill,1989.156-168.
  • 10Wright M,Loomis M,Padadopoulos P. Aerothermal analysis of the project fire Ⅱ afterbody flow,AIAA-2001-3065[R].Reston:AIAA,2001.

二级参考文献34

  • 1刘芹,任建亭,姜节胜,郭运强,陈换过.复合材料层合板非线性热振动分析[J].动力学与控制学报,2005,3(1):78-83. 被引量:5
  • 2史晓鸣,杨炳渊.瞬态加热环境下变厚度板温度场及热模态分析[J].计算机辅助工程,2006,15(B09):15-18. 被引量:37
  • 3解维华,张博明,杜善义.重复使用飞行器金属热防护系统的有限元分析与设计[J].航空学报,2006,27(4):650-656. 被引量:25
  • 4Rochelle W, Kinsey R E, Reid E A, et al. Spacecraft or bital debris reentry aerothermal analysis[C]//Proceedings of the Eighth Annual Thermal and Fluids Analysis Work shop:Spacecraft Analysis and Design. Houston: NASA/ Johnson Space Center, 1997: 1-14.
  • 5Neyret P, Betaharon K, Dest L, et al. The Intelsat Ⅵ A spacecraft[R]. AIAA 1992-1946, 1992.
  • 6Anonymous. DAS user's guide, version 2.0[R]. NASA, JSC 64047, 2007.
  • 7Bouslog S A, Ross B P, Madden C B. Space debris reentry riskanalysi[R]. AIAA-1994 0591, 1994.
  • 8Fritsche F,, Klinkrad H, Kashkovsky A, et al. Spacecraft disintegration during uncontrolled atmospheric re-entry [J]. Acta Astronautica, 2000, 47(2-9): 513-522.
  • 9Lips T, Fritsche B. A comparison of commonly used reentry analysis tools[J]. Acta Astronautica, 2005, 57 (2-8): 312-323.
  • 10Tewari A. Entry trajectory model with thermomechanical breakup[J]. Journal of Spacecraft and Rockets, 2009, 46 (2): 299-306.

共引文献49

同被引文献144

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部