期刊文献+

SiCOH低k介质中低表面粗糙度沟道的刻蚀研究 被引量:1

Low Roughness Trench Etched in SiCOH Low-k Films with C_2F_6/O_2/Ar Dual-Frequency Capacitively-Coupled Plasmas
下载PDF
导出
摘要 采用60 MHz/2 MHz双频率驱动的容性耦合放电等离子体技术,以C2F6/O2/Ar为刻蚀气体,开展了SiCOH低k介质中刻蚀低表面粗糙度沟道的研究。主要研究了O2/C2F6流量比对与SiCOH低k薄膜之间的刻蚀选择性的影响,以及O2/C2F6流量比、下电极功率对沟道刻蚀特性的影响。发现在O2/C2F6流量比为0.1以下时,光致抗蚀剂掩膜层与SiCOH低k薄膜之间具有较好的刻蚀选择性。对于沟道刻蚀,在O2/C2F6流量比为0.1时,下电极功率对沟道的表面粗糙度和剖面结构具有明显的影响。在下电极功率为30 W时,刻蚀的沟道底部平坦、沟道壁陡直,槽形完好,沟道底面的平均表面粗糙度降低至3.32 nm,因此,可以在SiCOH低k薄膜中刻蚀剖面结构完整的低表面粗糙度沟道。 Here, we addressed the etching of low roughness trench in the low-k SiCOH films with the C2F6/O2/Ar, dual-frequency (60 MHz/2 MHz) capacitively-coupled plasma. The impacts of the etching conditions on plasma etching of trench were evaluated. The results show that the ratio of O2 and C2F6 flow-rate and low frequency (LF) power have a ma- jor impact on the profile and average roughness of the trench. For example, at a ratio of 0.1 and a LF power of 30 W, a well-defined trench, with deep, vertical walls and a flat bottom,3.32 nm in average roughness, was etched, possibly be- cause of a good selectivity between the photo-resist and low-k SiCOH films, and because of a moderate ions bombard- ment.Besides,O-rich Si-O2 bonding was observed on the etched surfaces. However, a higher ratio of O2 and C2F6 flow- rate, say 0.20 to 0.50, or a higher LF power over-etched the photo-resist, resulting in a wider and rougher trench because of an increased transversal-etching of the low-k SiCOH films.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2014年第1期68-73,共6页 Chinese Journal of Vacuum Science and Technology
基金 国家自然基金项目(11275136 11075114 10975105)
关键词 SiCOH低k介质 沟道刻蚀 双频容性耦合等离子体 表面粗糙度 沟道剖面结构 SiCOH low-k dielectrics, Trench etching, Dual-frequency capacitively coupled plasma, Surface rough-ness, Trench profile
  • 相关文献

参考文献19

  • 1Maex K,Baklanov M R,Shamiryan D. Low Dielectric Constant Materials for Microelectrooics[J].{H}Journal of Applied Physics,2003.8793.
  • 2Shamiryan D,Abell T,Iacopi F. Low-k Dielectric Materials[J].{H}MATERIALS TODAY,2004.34.
  • 3Grill A. Plasma Enhanced Chemical Vapor Deposited SiCOH Dielectrics:from Low-k to Extreme Low-k Interconnect Materials[J].J App 1 Phys,2003.1785.
  • 4Abe H,Yoneda M,Fujiwara N. Developments of Plasma Etching Technology for Fabricating Semiconductor Devices[J].{H}Japanese Journal of Applied Physics,2008.1435.
  • 5Goldfarb D L,Mahorowala A P,G Galatin G M. Effect of Thin-Film Imaging on Line Edge Roughness Transfer to Under Layers during Etch Processes[J].{H}Journal of Vacuum Science and Technology,2004.647.
  • 6Guo W,Sawin H H. Review of Profile and Roughening Simulation in Microelectronics Plasma Rtching[J].{H}Journal of Physics D:Applied Physics,2009.194014.
  • 7Georgieva V,Bogaerts A. Numerical Simulation of Dual Frequency Etching Reactors:Influence of the External Process Parameters on the Plasma Characteristics[J].{H}Journal of Applied Physics,2005.023308.
  • 8Ye C,Xu Y J,Huang X J. Effect of Low-Frequency Power on Etching of SiCOH Low-k Films in CHF3 13.56 MHz/2 MHz Dual-Frequency Capacitively Coupled Plasma[J].{H}Microelectronic Engineering,2009.421.
  • 9Sankaran A,Kushner M J. Fluorocarbon Plasma Etching and Profile Evolution of Porous Low-Dielectric-Constant Silica[J].{H}Applied Physics Letters,2003.1824.
  • 10Eon D,Raballand V,Cartry G. High Density Fluorocarbon Plasma Etching of Methylsilsesquioxane SiOC(H) Low-k Material and SiC(H) Etch Stop Layer Surface Analyses and Investigation of Etch Mechanisms[J].{H}Journal of Physics D:Applied Physics,2007.3951.

二级参考文献32

  • 1Gou F, Gleeson M A, Kleyn A W. Sutf Sci[J],2007,601 (18) :76.
  • 2Helmer B A,Graves D B.J Vac Sci Technol [J] ,1998,A16 (6) :3502 - 3513.
  • 3Lu X, Ning J, Gou F, et al. Nucl Instrum Methods Phys Res Sect[J] ,2009, B267(18) :3235 - 3237.
  • 4Barone M E , Graves D B. J Appl Phys[ J ], 1995,77 (3) : 1263- 1274.
  • 5Berendsen H J C, Postma J P M, Gunsteren W F V. et al. J Chem Phys[ J], 1984,81:3684.
  • 6Abrams C F ,Graves D B.J Appl Phys[J].1999,86(2): 5938.
  • 7Tersoff J.Phys Rev B[J],1988,38(1 - 3):9902-9905.
  • 8TersoffJ.Phys RevLett[J],1988,61(1 - 3):2879.
  • 9Gou F, Xie Q, Zhu L, et al. Nucl Instrmn Methods Phys Res Sect[J] ,2006,B248(1) :113 - 116.
  • 10秦尤敏 赵成利 苟富君等.材料导报,2009,23(14):257-260.

共引文献25

同被引文献8

  • 1卢德江,蒋庄德.等离子体低温刻蚀单晶硅高深宽比结构[J].真空科学与技术学报,2007,27(1):25-30. 被引量:15
  • 2Babaeva Natalia Y, Kushner Mark J. Penetration of Plasma In- to the Wafer-Focus Ring Gap in Capacitively Coupled Plasmas [J] .Journal of Appled Physics,2007,101 : 1 - 11.
  • 3Czametzki U, Hebner G A. et al. Plasma Sheath Electric FieldStrengths above a Grooved Electrode in a Parallel-Plate Ra- dio-Frequency Discharge [ J]. IEEE Transactions on Plasma Science, 1999,27(I) :70 - 71.
  • 4Babaeva Natalia Y, Kushner Mark J. Ion Energy and Angular Distributions into the Wafer-Focus Ring Gap in Capacitively Coupled Discharges [ J ]. Journal of Physics D: Appled Physics,2008,41 : 1 - 4.
  • 5Zhang Yifing, Kushner Mark J.Space and Phase Resolved Ion Energy and Angular Distributions in Single-and Fual-Frequen- cy Capacitivcly Coupled Plasmas[ J]. Journal of Vacuum Sci- ence & Technology,2013,A31(6) :061311 1 - 17.
  • 6Dai Z L, Xu X, Wang Y N. A Self-Consistent Hybrid Model of a Dual Frequency Sheath: Ion Energy and Angular Distribu- t.ions [ J 1. Physics of Plasmas ( 1994 - present ), 2007, 14 ( 1 ) : 013507.
  • 7Ke Kuang-Han, Pu Bryan Y, Shah Hongching. Shield or Ring Surrounding Semiconductor Workpiece in Plasma Chamber [P]. US:6284093 B1,2001-09-04.
  • 8Pu Bryan Y, Shan Hongching,Ke Kuang-Han. Apparatus for Improving Wafer and Chuck Edge Protection [ P ]. US: 5740009,1998 - 04 - 14.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部