摘要
This study examines the hypothesis that soil respiration can always be interpreted purely in terms of biotic processes, neglecting the contribution of abiotic exchange to COg fluxes in alkaline soils of arid areas that characterize 5% of the Earth's total land surface. Analyses on flux data collected from previous studies suggested reconciling soil respiration as organic (root/microbial respiration) and inorganic (abiotic CO2 exchange) respiration, whose contributions in the total CO2 flux were determined by soil alkaline content. On the basis of utilizing mete- orological and soil data collected from the Xinjiang and Central Asia Scientific Data Sharing Platform, an incorpo- rated model indicated that inorganic respiration represents almost half of the total CO2 flux. Neglecting the abiotic module may result in overestimates of soil respiration in arid alkaline lands, which partly explains the long-sought "missing carbon sink".
This study examines the hypothesis that soil respiration can always be interpreted purely in terms of biotic processes, neglecting the contribution of abiotic exchange to COg fluxes in alkaline soils of arid areas that characterize 5% of the Earth's total land surface. Analyses on flux data collected from previous studies suggested reconciling soil respiration as organic (root/microbial respiration) and inorganic (abiotic CO2 exchange) respiration, whose contributions in the total CO2 flux were determined by soil alkaline content. On the basis of utilizing mete- orological and soil data collected from the Xinjiang and Central Asia Scientific Data Sharing Platform, an incorpo- rated model indicated that inorganic respiration represents almost half of the total CO2 flux. Neglecting the abiotic module may result in overestimates of soil respiration in arid alkaline lands, which partly explains the long-sought "missing carbon sink".
基金
National Basic Research Program of China (2009CB825105)