期刊文献+

基于白碳黑的水化硅酸钙制备及其磷回收特性 被引量:5

Preparation and phosphorus recovery characteristic of calcium silicate hydrate based on white carbon black
原文传递
导出
摘要 以白碳黑、硅灰、硅藻土和硅胶筛选硅质原料,并与钙质原料电石渣制备了水化硅酸钙。借助XRF、BET、FTIR等表征手段,通过多次重复除磷实验,研究了硅质原料特性对水化硅酸钙回收磷性能的影响。结果表明,白碳黑具有极高的反应活性,因此可作为制备具有磷回收特性的水化硅酸钙的硅质原料。结合XRD等表征发现,白碳黑的有效利用率是影响水化硅酸钙回收磷性能的关键,该利用率取决于白碳黑与电石渣的摩尔配比以及水热反应温度。当电石渣与白碳黑的摩尔比为1.6∶1,反应温度为170℃时,白碳黑具有最佳的利用效率。该条件制备的水化硅酸钙可作为晶种,在其表面结晶形成羟基磷灰石,从而达到磷回收的目的,磷回收后固体物质中的磷含量为19.05%。 The carbide residue and siliceous materials (such as silica fume, diatomite white carbon black and silica gel) were used to synthesize calcium silicate hydrate comparatively. The repeated phosphorus removal tests and the effect of the characteristics of siliceous materials on the phosphorus recovery performance of calcium silicate hydrate were studied via XRF, BET and FTIR. The result showed that white carbon black has higher ac- tivity to react with carbide residue, so it is suitable to using as a siliceous material. According to XRD test, ef- fective rate of utilization of white carbon black was the key for phosphorus recovery performance of calcium sili- cate hydrate. This utilization rate was depended on the Ca/Si mole ratio and reaction temperature. The utilization rate reached the best under the conditions of Ca/Si mole ratio of 1.6:1 and reaction temperature of 170℃. Un- der these conditions, phosphorus could be recovered in the form of hydroxyapatite using calcium silicate hydrate as seed crystal. The phosphorus content of solid material was 19.05%.
出处 《环境工程学报》 CAS CSCD 北大核心 2014年第2期493-498,共6页 Chinese Journal of Environmental Engineering
基金 国家"水体污染控制与治理"重大科技专项(2009ZX07315) 重庆市重大科技专项(CSTC 2008AB7133)
关键词 磷回收 水化硅酸钙 白碳黑 硅质原料 反应活性 phosphorus recovery calcium silicate hydrate white carbon black siliceous materials reac- tivity
  • 相关文献

参考文献4

二级参考文献66

  • 1梅玉丹,李海波,王振中,于洋,姚新生,肖伟.灰毡毛忍冬花蕾中苷类化学成分研究[J].中草药,2020,51(2):287-292. 被引量:14
  • 2柴兴云,王林,宋越,陈君,李萍.山银花中黄酮类成分的研究[J].中国药科大学学报,2004,35(4):299-302. 被引量:70
  • 3张文生,王宏霞,叶家元.水化硅酸钙的结构及其变化[J].硅酸盐学报,2005,33(1):63-68. 被引量:40
  • 4Bashan L, Bashan Y, 2004. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003). Water Research, 38: 4222-4246.
  • 5Bellier N, Chazarenc F, Comeau Y, 2006. Phosphorus removal from wastewater by mineral apatite. Water Research, 40: 2965-2971.
  • 6Berg U, Donnert D, Ehbrecht A, 2005. "Active filtration" for the elimination and recovery of phosphorus from waste water. Colloid Surface A, 265: 141-148.
  • 7Berg U, Donnert D, Weidler P, 2006. Phosphorus removal and recovery from wastewater by tobermorite-seeded crystallisation of calcium phosphate. Water Science and Technology, 53: 131-138.
  • 8Deliyanni E, Peleka E, Lazaridis N, 2007. Comparative study of phosphates removal from aqueous solutions by nanocrystalline akaganeite and hybrid surfactant-akaganeite. Seperation and Purification Technology, 55: 478-486.
  • 9Drizo A, Forget C, Chapuis R, Comeau Y, 2006. Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Research, 40: 1547-1554.
  • 10Giesen A, 1999. Crystallisation process enables environmental friendly phosphate removal at low costs. Environmental Technology, 20: 769-776.

共引文献56

同被引文献111

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部