期刊文献+

由连续半鞅驱动的倒向随机微分方程解的比较定理(英文) 被引量:1

COMPARISON THEOREM FOR SOLUTIONS OF BSDES DRIVEN BY CONTINUOUS SEMI-MARTINGALES
下载PDF
导出
摘要 彭实戈[1]首先建立了一维倒向随机微分方程的比较定理,本文在Lipschitz条件下研究由连续半鞅驱动的倒向随机微分方程,我们将比较定理推广到此类倒向随机微分方程,并且证明方法比彭实戈[1]的更加直接和简单. Comparison theorem for solutions of one-dimensional backward stochastic equa- tion (BSDE for short) was first established by Peng [1]. In this paper, we study the BSDEs drivenby continuous semi-martingale satisfying Lipschitz condition. We generalize the comparison theo- rem to this case and prove it by using techniques which are different from those of Peng [1]. Our method is more direct and simpler.
出处 《数学杂志》 CSCD 北大核心 2014年第1期7-11,共5页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(51104069)
关键词 倒向随机微分方程 比较定理 连续半鞅 backward stochastic differential equations comparison theorem continuoussemi-martingale
  • 相关文献

参考文献9

二级参考文献22

  • 1周圣武.高维倒向随机微分方程比较定理(英文)[J].应用概率统计,2004,20(3):225-228. 被引量:2
  • 2李娟.由一般鞅驱动的倒向随机微分方程[J].山东大学学报(理学版),2005,40(4):70-76. 被引量:9
  • 3彭实戈.倒向随机微分方程及其应用[J].数学进展,1997,26(2):97-112. 被引量:72
  • 4王允艳,唐明田.带随机延滞的门限ARCH模型的稳定性[J].江西理工大学学报,2007,28(4):63-67. 被引量:3
  • 5Lepeltier J P, Martin J S. Backward Stochastic Differential Equation with Continuous Coefficient [J]. Statist Probab Lett., 1997, (32): 425 - 430.
  • 6Bismut J M. An introductory approach to duality, optimal stochastic control[J]. SIAM Rev, 1978, 20: 62-78.
  • 7P ardoux E, Peng S. Adapted solution of a backward stochastic differential equation[ J]. Systems and Control Letters, 1990, 14: 55- 61.
  • 8Duffie D, Epstein L. Asset pricing with stochastic differential utility[J]. Rev Financial Stud, 1992b, 5: 411 -436.
  • 9Tang S, Li X. Necessary condition for optimal control of stochastic systems with random jumps[J]. SIAM J Control Optim, 1994, 32:1 447 - 1 475.
  • 10N El Karoui, Huang S J. A general result of existence and uniqueness of BSDE[J]. Pitman Research Notes in Mathematics, Series,1997, 27 - 36.

共引文献29

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部