期刊文献+

修正矩阵A-CB的Drazin逆(英文) 被引量:2

THE DRAZIN INVERSE OF A MODIFIED MATRIX A-CB
下载PDF
导出
摘要 本文研究了修正矩阵Drazin逆的表示形式.利用k次幂等矩阵和可对角化矩阵的性质,减弱了文献[4]中的条件,获得了新的Drazin逆的表示形式. In this paper, we study the representations of the Drazin inverse of a modified matrix A - CB. By the properties of the k-idempotent matrix and the diagonalizable matrix, we get some new representations of the Drazin inverse through weakened conditions of literature [4].
出处 《数学杂志》 CSCD 北大核心 2014年第1期12-16,共5页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(10671182) Henan Province Key Disciplines of Applied Mathematics
关键词 修正矩阵 DRAZIN逆 SCHUR补 modified matrix Drazin inverse Schur complement
  • 相关文献

参考文献12

  • 1Wei Y. Index splitting for the Drazin inverse and the sigular linear system [J]. Appl. Math. Comput., 1998, 95: 115-124.
  • 2Wei Y. On the perturbation of the group inverse and oblique projection [J]. Appl. Math. Comput., 1999, 98: 29-42.
  • 3Wei Y, Wang G. The perturbation theory for the Drazin inverse and its applications [J]. Linear Algebra Appl., 1997, 258: 179-186.
  • 4Wei Yimin. The Drazin inverse of a modified matrix[J]. Applied Mathematics and Computation, 2002, 125: 295-301.
  • 5Liu Xifu. The Drazin inverse of a modified matrix [J]. Journal of Southwest University (Natural Science Edition), 2012, 34(6): 74-77.
  • 6Dopazo E, Martlnez-Serrano M F. On deriving the Drazin inverse of a modified matrix [J]. Linear Algebre Appl., 2011, in press.
  • 7Cvetkovic-Ilic D S, Wei Y. Representations for the Drazin inverse of bounded operators on Banach space [J]. Electron. Linear Algebra, 2009, 18: 613-627.
  • 8Hartwig R E, Li X, Wei Y. Representations for the Drazin inverse of 2 × 2 block matrix [J]. Matrix Anal. Appl., 2006, 27: 757-771.
  • 9Martfnez-Serrano M F, Castro-Gonzalez N. On the Drazin inverse of block matrices and generalized Schur complement [J]. Appl. Math. Comput., 2009, 215: 2733-2740.
  • 10Wei Y. The Drazin inverse of updating of a square matrix with application to perturbation formula [J]. Apph Math. Comput., 2000, 108: 77-83.

同被引文献2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部