期刊文献+

一个与投影体相关的锥体积不等式

A PROJECTION-RELATED CONE VOLUME INEQUALITY
下载PDF
导出
摘要 本文研究了一个与投影体相关的锥体积不等式.利用凸函数的梯度性质,获得了n维欧氏空间中关于任意原点对称凸体的一个锥体积不等式,推进了Schneider投影问题的解决. In this paper, we study a projection-related cone volumn inequality. By using gradient projection of convex function, we obtain a new cone volume inequality restricted to the origin-symmetric convex bodies in R-n. The inequality promotes the solves of Schneider's projection problem.
出处 《数学杂志》 CSCD 北大核心 2014年第1期85-90,共6页 Journal of Mathematics
关键词 凸体 投影体 Schneider投影问题 锥体积不等式 convex bodies projection body Schneider's projection problem cone volumeinequality
  • 相关文献

参考文献3

二级参考文献29

  • 1Ball K. Volume ratios and a reverse isoperimetric inequality [J]. J. London Math. Soc., 1991, 44: 351-359.
  • 2Bourgain J, Lindenstrauss J. Projection bodies [J]. Geometric Aspects of Functional Analysis, Lec- ture Notes in Math., Berlin: Springer, 1988, 250-270.
  • 3Campi S, Gronchi P. The LP-Busemann-Petty centroid inequality [J]. Adv. Math., 2002, 167: 128- 141.
  • 4Campi S, Gronchi P. Volume inequalities for LP-zonotopes [J]. Mathematika, 2006, 53:71 80.
  • 5Gardner R J. Geometric tomogl hy (second edition) [M] . Cambridge: Cambridge University Press, 2006.
  • 6Gromov M, Milman V. Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces [J]. Composito Math., 1987, 62: 263-282.
  • 7Haberl C, Schuster F. General Lp arlene isoperimetric inequalities [J]. J. Differential Geom., 2009, 83:1 26.
  • 8He Binwu, Leng Gangsong, Li Kanghai. Projection problems for symmetric polytopes [J]. Adv. Math., 2006, 207: 73-90.
  • 9Ludwig M. A classification of SL(n) invariant valuations [J]. Ann. Math., 2010, 172: 1219-1267.
  • 10Lutwak E, Yang Deane, Zhang Gaoyong. A new affine invariant for polytopes and Schneider's projection problem [J]. Trans. Amer. Math. Soc., 2001, 353: 1767-1779.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部