期刊文献+

基于双尺度Sech模板的浸润性乳腺癌检测方法研究 被引量:1

Detect Method Research of Infiltrative Breast Cancer Based Double-size Template
下载PDF
导出
摘要 乳腺肿块的准确检测是目前计算机辅助诊断系统的关键。为了准确检测X线乳腺图像中的可疑肿块区域,提出一种基于双尺度Sech模板的早期乳腺癌检测方法。首先根据乳腺X线图像的特征对图像进行预处理,包括乳腺区域提取和内外侧斜位图像胸肌提取;然后对提取的乳腺图像进行基于两个不同尺寸的Sech模板的模板匹配,将模板匹配后得到的相似度图像进行融合和阈值截断;最后进行可疑乳腺肿块区域的定位。结果表明,基于双尺度的Sech模板的检测具有更好的检测效果,改善了基于单尺度模板检测准确率低的问题,并降低了假阳率。 Breast mass detection accurately is the key to computer aided diagnosis system at present. To accurately detect breast masses in the mammograms, a method is proposed to detect early infiltrative mas- ses from mammographic images based on double-size Sech template matching. First is image preproeess- ing, including the breast region abstraction from the mammogram and the pectoral muscle detection in the MLO; then template matching based on double-size Seeh template, after the images fusion and threshold processing, is the massqike regions positioning. The test results show the effectiveness of the proposed al- gorithm, it improved the accuracy rate of mass detection based on single scale, and reduced the positive rate.
出处 《科学技术与工程》 北大核心 2014年第1期139-142,共4页 Science Technology and Engineering
基金 山东省星火计划项目(2011XH11009)资助
关键词 计算机辅助诊断 浸润性乳腺癌 乳腺肿块 双尺度Sech模板 CAD infiltrative breast cancer breast mass double-size template
  • 相关文献

参考文献3

二级参考文献24

  • 1徐伟栋,王小英,夏顺仁,严勇.基于模型的乳腺X线图像胸肌分割算法研究[J].浙江大学学报(工学版),2005,39(3):427-432. 被引量:5
  • 2CHENG Heng-da, SHAN Juan, JU Wen, et al. Automated breast cancer detection and classification using ultrasound images: a survey [J]. Pattern Recognition,2010,43( 1 ) :299-317.
  • 3JEMAL A, SIEGEL R, XU J, et al. Cancer statistics 2010[J]. CA Cancer J Clin,2010,60(5) :277-300.
  • 4KUSHI L H, BYERS T, DOYLE C, et al. American cancer society guidelines on nutrition and physical activity for cancer prevention: re- ducing the risk of cancer with healthy food choices and physical activ- ity[J]. CA Cancer J Clin,2006,56(5) :254-281.
  • 5CUMMINGS S R, TICE J A, BAUER S, et al. Prevention of breast cancer in postmenopausa! women: approaches to estimating and re- ducing risk[J], d Natl Cancer Inst,2009,101 (6) :384-398.
  • 6JESNECK J, LO J, BAKER J. Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors [J]. Radiology,2007,244(2) :390-398.
  • 7CHEN D R, KUO W J, CHANG R F, et al. Use of the bootstrap technique with small training sets for computer-aided diagnosis in breast ultrasound [ J ]. Ultra Sound in Medicine and Biology, 2002,28(7) :897-902.
  • 8HUANG Y L, CHEN D R, LIU Y K. Breast cancer diagnose is using image retrieval for different ultrasonic systems [ C ]//Proc of Interna- tional Conference on Image Processing. 2004:2598-2960.
  • 9HWANG K H, LEE J G, KIM J H, et al. Computer aided diagnosis (CAD) of breast mass on ultra sonography and scintimammography [ C]//Proc of the 7th International Workshop on Enterprise Networ- king and Computing in Health Care Industry. 2005:187-189.
  • 10HUANG Y, WANG K, CHEN D. Diagnosis of breast tumors with ul- trasonic texture analysis using support vector machines [ J]. Neural Computing & Applications,2006,15(2 ) : 164-169.

共引文献10

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部