摘要
在高等数学中,经常利用拉格朗日乘数法解决多元函数的极值问题.以其为参照,分别列举了柯西定理、均值不等式、换元和三角函数等方法,并加以比对,力争为多元函数的极值问题学习打开思路.
The Lagrange multiplier methed is used to solving extremum problem of serveral variables in higher mathematics. With the lagrange multiplier method as reference, some methods are listed and compared, such as Cauchy theorem, mean value inequality, change element and triangle function, etc, which purpose is to open the way for the extreme value of multivariate function.
出处
《哈尔滨师范大学自然科学学报》
CAS
2013年第5期33-35,共3页
Natural Science Journal of Harbin Normal University
关键词
拉格朗日乘数法
柯西定理
均值不等式
换元法
比较
高等数学
The Lagrange multiplier method
The Cauchy theorem
Mean value inequality
Substitution
Comparison
Higher mathematics