期刊文献+

Time-dependent Density Functional-based Tight-bind Method Efficiently Implemented with OpenMP Parallel and GPU Acceleration

Time-dependent Density Functional-based Tight-bind Method Efficiently Implemented with OpenMP Parallel and GPU Acceleration
下载PDF
导出
摘要 The time-dependent density functional-based tight-bind (TD-DFTB) method is implemented on the multi-core and the graphical processing unit (GPU) system for excited state calcu-lations of large system with hundreds or thousands of atoms. Sparse matrix and OpenMP multithreaded are used for building the Hamiltonian matrix. The diagonal of the eigenvalue problem in the ground state is implemented on the GPUs with double precision. The GPU- based acceleration fully preserves all the properties, and a considerable total speedup of 8.73 can be achieved. A Krylov-space-based algorithm with the OpenMP parallel and CPU acceleration is used for finding the lowest eigenvalue and eigenvector of the large TDDFT matrix, which greatly reduces the iterations taken and the time spent on the excited states eigenvalue problem. The Krylov solver with the GPU acceleration of matrix-vector product can converge quickly to obtain the final result and a notable speed-up of 206 times can be observed for system size of 812 atoms. The calculations on serials of small and large systems show that the fast TD-DFTB code can obtain reasonable result with a much cheaper computational requirement compared with the first-principle results of CIS and full TDDFT calculation.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第6期635-645,I0003,共12页 化学物理学报(英文)
关键词 Density-functional theory Tight-binding method Time-dependent densityfunctional theory Excited state Graphical processing unit Krylov iterative algorithm Sparse matrix OPENMP 含时密度泛函理论 OpenMP GPU 时间依赖 并行 绑定 哈密顿矩阵 特征值问题
  • 相关文献

参考文献61

  • 1P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
  • 2E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
  • 3M. E. Casida, K. C. Casida, and D. R. Salahub, Int. J. Quantum Chem. 10, 933 (1998).
  • 4M. E. Casida and D. P. Chong, Recent Advances in Density Functional Methods, Singapore: World Scientific, 1, (1995).
  • 5E. Gross, J. Dobson, M. Petersilka, and R. N alewaj ski, Density Functional Theory II, Berlin: Springer, 181, (1996).
  • 6M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 16, 1212 (1996).
  • 7M. A. L. Marques and E. K. U. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004).
  • 8K. Eichkorn, O. Treutler, H. Ohm, M. Haser, and R. Ahlrichs, Chem. Phys. Lett. 240, 283 (1995).
  • 9K. Eichkorn, F. Weigend, O. Treutler, and R. Ahlrichs, Theor. Chem. Ace. 97, 119 (1997).
  • 10C. M. Isborn, N. Luehr, I. S. Ufirntsev, and T. J. Martinez, J. Chem. Theory Cornput. 7, 1814 (2011).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部