期刊文献+

替代标准品校正函数法定量分析不产氧光合细菌螺菌黄质系类胡萝卜素 被引量:1

Quantification of carotenoids of spirilloxanthin series from anoxygenic phototrophic bacteria by substitute reference standard calibration function method
原文传递
导出
摘要 【目的】针对不产氧光合细菌(APB)类胡萝卜素(Car)标准品缺乏的问题,以替代标准品实现螺菌黄质系多种Car组分同步、快速、准确的定量分析。【方法】以沼泽红假单胞菌CQV97为材料,采用吸收光谱、薄层层析和HPLC等方法制备螺菌黄质系Car标准品;以柠檬黄和番茄红素为替代标准品,采用HPLC法,建立了螺菌黄质系Car多组分的定量方法。【结果】制备的6种Car标准品纯度达95%以上。确定了Car的HPLC分析条件,以Car标准品为对照,得到了螺菌黄质系6种Car组分的定性HPLC指纹图谱。在选择的HPLC条件下,测定了6种Car标准品和2种替代标准品的标准曲线,确立了2种替代标准品分别与6种Car标准品之间的定量校正函数关系,并用于实际样品YL28和CQV97菌株的Car定量分析。采用Car标准品法测定的6种Car含量的RSD小于1.5%、回收率在96%-104%,替代标准品法与Car标准品法测定结果吻合,其相对误差小于0.1%。【结论】通过替代标准品校正函数关系,建立了2种准确定量分析螺菌黄质系Car多组分的方法。替代标准品柠檬黄和番茄红素均能准确地传递待测Car的量值关系,实现了螺菌黄质系6种Car的同步、快速、准确的定量分析,弥补了现有Car组分相对定量方法的不足。讨论了替代标准品法校正因子适用范围的局限性,提出了校正函数关系的思路和方法。这为全面实现APB球形烯系、奥氏酮系等其它Car的快速、准确定量分析提供了借鉴和参考。 [ Objective] In this study, we developed a strategy for accurate, rapid and simultaneous quantification of six carotenoids by substitute reference standard. [ Methods] We prepared six carotenoid standards of spirilloxanthin series from Rhodopesudomonnas palustris CQV97 by speetrophotometry, thin layer chromatography and HPLC. The simultaneous quantification method for six earotenoids was established by HPLC using tartrazine and lyeopene as substitute reference standards. [ Results] We established the HPLC fingerprinting of earotenoids of spirilloxanthin series. The quantitative calibration function relationships between two substitute reference standards and six earotenoids were explored. Based on the quantitative calibration function relationships, we quantitatively analyzed carotenoid contents of two samples of CQV97 and YL28 strains. The RSD and recovery of carotenoid contents determined by substitute reference standards method were consistent with quantitative analysis of carotenoid standards method. [ Conclusion] The substitute reference standards were capable of accurately transmitting the quantitative relationship of tested samples. The method could realize the simultaneous quantification of six earotenoids.
出处 《微生物学报》 CAS CSCD 北大核心 2014年第2期218-228,共11页 Acta Microbiologica Sinica
基金 国家自然科学基金(31070054 31270106) 福建省自然科学基金(2010J01209 2012J01136)~~
关键词 定量分析 类胡萝卜素 螺菌黄质系 替代标准品 quantification, carotenoids, spirilloxanthin series, substitute reference standard
  • 相关文献

参考文献20

  • 1Brotosudarmo TH,Collins AM,Gall A,Roszak AW Gardiner AT Blankenship RE Cogdell RJ. The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium[J].{H}Biochemical Journal,2011.51-61.
  • 2Kuo FS,Chien YH,Chen CJ. Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris[J].{H}BIORESOURCE TECHNOLOGY,2012.315-318.
  • 3Woronowicz K,Niederman RA. Proteomic analysis of the developing intracytoplasmic membrane in Rhodobacter sphaeroides during adaptation to low light intensity[J].Recent Advances in Phototrophic Prokaryotes,2010,(3):161-178.
  • 4Moskalenko AA,Makhneva ZK. Light-harvesting complexes from purple sulfur bacteria Allochromatium minutissimum assembled without carotenoids[J].{H}Journal of Photochemistry and Photobiology B:Biology,2012.1-7.
  • 5关大伟,李俊,沈德龙,曹凤明,李力,姜昕.光合细菌PCR检测技术的建立与应用[J].应用与环境生物学报,2008,14(5):699-704. 被引量:10
  • 6沈涛,刘斯开,傅罗琴,郑佳佳,李卫芬.光合细菌在鱼类养殖上的应用及其作用机理[J].水产科学,2012,31(2):114-118. 被引量:12
  • 7Korthals H,Steenbergen C. Separation and quantification of pigments from natural phototrophic microbial populations[J].{H}FEMS Microbiology Ecology,1985,(3):177-185.
  • 8Mitrowska K,Vincent U,von Holst C. Separation and quantification of 15 carotenoids by reversed phase high performance liquid chromatography coupled to diode array detection with isosbestic wavelength approach[J].{H}Journal of Chromatography A,2012.44-53.
  • 9钱卫,王肇颖,韩波,肖敏,杜桂彩,李永贵.光合细菌中番茄红素的研究[J].山东大学学报(理学版),2004,39(3):111-115. 被引量:11
  • 10Zhang J,Lu L,Yin L,Xie S Xiao M. Carotenogenesis gene cluster and phytoene desaturase catalyzing both three-and four-step desaturations from Rhodobacter azotoformans[J].{H}FEMS Microbiology Letters,2012,(2):138-145.

二级参考文献94

共引文献529

同被引文献29

  • 1Deisenhofer J, Epp O, Miki K, et al. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A resolution[J]. Nature, 1985, 318(6047): 618-624.
  • 2Gall A, Berera R, Alexandre MT, et al. Molecular adaptation of photoprotection: triplet states in light-harvesting proteins[J]. Biophysical Journal, 2011,101(4): 934-942.
  • 3Chi SC, Mothersole DJ, Dilbeck P, et al. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway[J]. Biochimica et Biophysica Acta, 2015, 1847(2): 189-201.
  • 4Kosumi D, Maruta S, Fujii R, et al. A regulation of energy flow in purple bacterial photosynthetic antennas[J]. Intemational Conference on Ultrafast Phenomena, 2014, 7(1): 12-13.
  • 5Papagiannakis E, Das SK, Gall A, et al. Light harvesting by carotenoids incorporated into the B850 light-harvesting complex from Rhodobacter sphaeroides R-26.1: excited-state relaxation, ultrafast triplet formation, and energy transfer to bacteriochlorophyll[J]. The Journal of Physical Chemistry B, 2003. 107(23): 5642-5649.
  • 6Kakitani Y, Fujii R, Hayakawa Y, et al. Selective binding of carotenoids with a shorter conjugated chain to the LH2 antenna complex and those with a longer conjugated chain to the reaction center from Rubrivivax gelatinosus[J]. Biochemistry, 2007, 46(24): 7302-7313.
  • 7Hayashi H, Noguehi T, Tasumi M. Studies on the interrelationship among the intensity of a Raman marker band of carotenoids, polyene chain structure, and efficiency of the energy transfer from carotenoids to baeteriochlorophyll in photosynthetic bacteria[J]. Photochemistry and Photobiology, 1989, 49(3): 337-343.
  • 8Koyama Y, Kakitani Y. Mechanisms of carotenoid-to-bacteriochlorophyll energy transfer in the light harvesting antenna complexes 1 and 2: dependence on the conjugation length of carotenoids[J].[J].[A]//Grimm B, Porra RJ, Rtidiger W, et al. Chlorophylls and Bacteriochlorophylls[M]. Dordrecht, The Netherlands: Springer Netherlands, 2006: 431-443.
  • 9Polivka T, Niedzwiedzki D, Fuciman M, et al. Role of B800 in earotenoid-bacterioeblorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides[J]. The Journal of Physical Chemistry B, 2007, 111 (25): 7422-7431.
  • 10Frank HA, Farhoosh R, Aldema ML, et al. Carotenoid-to-bacteriochlorophyll singlet energy transfer in cartenoid-ineorporated B850 light-harvesting complexes of Rhodobacter sphaeroides R-26.1 [J]. Photochemistry and Photobiology, 1993, 57(1): 49-55.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部