期刊文献+

一类特殊的拟几乎Einstein度量直径的下界估计(英文)

Lower diameter estimate for a special quasi-almost-Einstein metric
下载PDF
导出
摘要 加权Myer型定理给出了具有带正下界的τ-Bakry-Emery曲率的完备黎曼流形直径的上界估计,紧致流形直径的下界估计也是有趣的问题.本文首先运用Hopf极大值原理证明了一类特殊的τ-拟几乎Einstein度量势函数的梯度估计.运用该梯度估计得到了该度量直径的下界估计.该结果推广了王林峰的关于紧致下-拟Einstein度量直径下界估计的结果. The weighted Myers' theorem gives an upper bound estimate for the diameter of a complete Riemannian manifold with the τ-Bakry-Emery curvature bounded from below by a positive number. The lower bound estimate for the diameter of a compact manifold is also an interesting question. In this paper, a gradient estimate for the potential function of a special τ-quasi-almost-Einstein metric was established by using the Hopf's maximum principle. Based on it, a lower bound estimate for the diameter of this metric was derived. The result generalizes Wang's lower diameter estimate for compact r-quasi-Einstein metrics.
机构地区 南通大学理学院
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期27-35,共9页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(10971066,11171254)
关键词 拟几乎Einstein度量 梯度估计 直径估计 quasi-almostpEinstein metric gradient estimate diameter estimate
  • 相关文献

参考文献19

  • 1QIAN Z M. Estimates for weight volumes and applications[J].Quarterly Journal of Mathematics:Oxford Journals,1997.235-242.
  • 2LOTT J. Some geometric properties of the Bakry-Emery Ricci tensor[J].Commentarii Mathematici Helvetici,2003.865-883.
  • 3LI X D. Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds[J].Journal de Mathématiques Pures et Appliqués,2005.1295-1361.
  • 4WANG L F. The upper bound of the L2μ spectrum[J].{H}ANNALS OF GLOBAL ANALYSIS AND GEOMETRY,2010.393-402.
  • 5PIGOLA S,RIGOLI M,SETTI A G. Ricci almost solitons[J].Annali della Scuola Normale Superiore di Pisa,2011,(4):757-799.
  • 6WANG L F. Diameter estimate for compact quasi-Einstein metrics[J].{H}Mathematische Zeitschrift,2013.801-809.
  • 7CASE J,SHU Y J,WEI G. Rigidity of quasi-Einstein metrics[J].{H}DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS,2011.93-100.
  • 8WANG L F. Rigid properties of quasi-Einstein metrics[J].{H}Proceedings of the American Mathematical Society,2011.3679-3689.
  • 9WANG L F. On noncompact τ-quasi-Einstein metrics[J].{H}Pacific Journal of Mathematics,2011.449-464.
  • 10WANG L F. On Lpf-spectrum and τ-quesi-Einstein metric[J].{H}Journal of Mathematical Analysis and Applications,2012.195-204.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部