期刊文献+

基于深层神经网络(DNN)的汉语方言种属语音识别 被引量:6

Belongingness of Chinese dialect speech recognition based on deep neural network
下载PDF
导出
摘要 将深层神经网络(Deep Neural Network)应用于汉语方言种属语音识别.基于优化的QuickNet软件,为方言识别实现了一种有监督的DNN逐层预训练方法.在训练时,从3层开始逐层做有监督的神经网络训练,每增长一层的初始权值包含前一层训练好的部分权值和输出端的随机权值.在得到最大层的初始权值后,再进行传统的BP网络训练.该方法和普通神经网络相比识别率有较大提升,可用于移动互联网标准语音识别人口、方言口音鉴识等领域. Based on the modified QuickNet software, we proposed a supervised DNN layerwise pre-training method for dialect speech recognition. The pre-training will start from a 3-layer neu- ral network till the maximum layer, during which we will do supervised training. The initial weights of a new layer are composed of the partial trained weights of lower level network and the randomized weights closed to the output layer. Then we will do traditional back-propagation training when the initial weights of the maximum layer network are obtained. This method achieved a relatively higher recognition rate compared with normal neural network training and can be used in mobile speech recognition apps, the recognition of dialects speech and so on.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期60-67,共8页 Journal of East China Normal University(Natural Science)
关键词 深层神经网络 方言语音识别 QuickNet deep neural network dialects speech recognition QuickNet
  • 相关文献

参考文献8

  • 1HINTON G,DENG L,YU D. Deep neural networks for acoustic modeling in speech recognition:The shared views of four research groups[J].Signal Processing Magazine IEEE,2012,(6):82-97.
  • 2BAKER J. The DRAGON system-An overview[J].Acoustics Speech and Signal Processing IEEE Transactions on,1975,(1):24-29.
  • 3OH K S,JUNG K. GPU implementation of neural networks[J].{H}Pattern Recognition,2004,(6):1311-1314.
  • 4顾明亮,沈兆勇.基于语音配列的汉语方言自动辨识[J].中文信息学报,2006,20(5):77-82. 被引量:19
  • 5RUMELHART D E,HINTON G E,WILLIAMS R J. Learning representations by back-propagating errors[J].{H}NATURE,1986,(6088):533-536.
  • 6HINTON G E,OSINDERO S,TEH Y W. A fast learning algorithm for deep belief nets[J].{H}Neural Computation,2006,(7):1527-1554.
  • 7LAROCHELLE H,BENGIO Y,LOURADOUR J. Exploring strategies for training deep neural networks[J].The Journal of Machine Learning Research,2009,(10):1-40.
  • 8BENGIO Y,LAMBLIN P,POPOVICI D. Greedy layer-wise training of deep networks[J].Advances in Neural Information Processing Systems,2007,(19):153.

二级参考文献9

  • 1侯精一.现代汉语方言音库[M].上海:上海教育出版社,1994—1999.
  • 2Wuei-He Tsai,Wen-Whei Chang,Discrimination Training of Guassian Mixture Bigram Models with Application to Chinese Dialect Identification[J].Speech Communication,2002,36:317-326.
  • 3Y.K.Muthusamy,E.Barnard,and R.A.Cole,Reviewing Automatic Language Identification[J].IEEE Signal Processing Mag.,1994,11(4):33 -41.
  • 4M.A.Zissman,Comparison of Four Approaches to Automatic Language Identification of Telephone Speech,[J].IEEE Trans.Speech and Audio Processing,1996,4 (1):31 -34.
  • 5Alvin F.Martin,Mark A.Przybocki,NIST 2003 Language Recognition Evaluation[M].In:EuroSpeech[C],2003.
  • 6Torres-Carrasquillo,P.A.; Reynolds,D.A.; Deller,J.R.,Jr.,Language identification using Gaussian mixture model tokenization[A].IEEE International Conference on Acoustics,Speech,and Signal Processing[C],Orlando,Florida,May 2002,USA.
  • 7F.Jelinek,Statistical Methords for Speech Recognition[M].Cambridge,Massachusetts,MIT Press,1999.
  • 8周志华,曹存根.经网络及其应用[M],北京:清华大学出版社,2004年9月.
  • 9陈海伦.方言机器识别技术研究[J].中国人民公安大学学报(自然科学版),2000,6(1):33-38. 被引量:2

共引文献18

同被引文献48

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部