期刊文献+

基于SINDA平台的二氧化碳热泵热水器仿真 被引量:1

Modeling and Simulation of a Heat Pump Water Heater with CO_2
下载PDF
导出
摘要 基于SINDA/FLUINT平台建立了二氧化碳热泵热水器分布参数模型,并对系统稳态过程、开机及制取热水动态过程进行仿真,得到温度、压力等参数的沿程分布特征和实时运行规律。通过与实验数据的对比,模型计算误差为10%左右。仿真模型可用于二氧化碳热泵热水器气冷器等关键部件设计,以及系统超临界运行的控制参数优化。 A distributed simulation model for CO2 heat pump water heater is developed based on SINDA/ FLUENT. The static or dynamic start-up and stop procedure are simulated. The characters including temperature and pressure among the system are analyzed. The simulating error is about 10 percent compared with the experiment data. The models can be used for CO2 heat pump hot water components design and system optimization.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期47-51,56,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(51076170)
关键词 二氧化碳 热泵热水器 SINDA FLUINT 仿真 CO2 heat pump hot water SINADA/FLUENT simulation
  • 相关文献

参考文献1

二级参考文献6

  • 1李惠珍 康海军 辛荣昌.开缝翅片管换热器传热和阻力特性实验研究[A]..全国高等学校工程热物理第四届学术会议论文集[c].杭州:浙江大学出版社,1992.277-280.
  • 2Wang C C, Lee W S, Sheu W J. A comparative study of compact enhanced fin-and-tube heat exchangers[J].International Journal of Heat and Mass Transfer,2001, 44(18): 3 565-3 573.
  • 3Yun J Y, Lee K S. Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit rins[J]. International Journal of Heat and Mass Transfer, 2000, 43(14): 2 529-2 539.
  • 4Guo Z Y, Li D Y, Wang BX. A novel concept for convective heat transfer enhancement[J]. InternationalJournal of Heat and Mass Transfer, 1998, 41(14):2 221-2 225.
  • 5Tao W Q, He Y L, Wang Q W, et al. A unified analysis on enhancing single phase convective heat transfer with field synergy principle[J]. Internaltional Journal of Heat and Mass Transfer, 2002, 45(24): 4 871-4 879.
  • 6屈治国,何雅玲,陶文铨.平直开缝翅片传热特性的三维数值模拟及场协同原理分析[J].工程热物理学报,2003,24(5):825-827. 被引量:76

共引文献32

同被引文献19

  • 1陈琪,吕宇捷,佟杨,李涛,陈光明,唐黎明.跨临界CO_2热泵系统的喷射器特性[J].化工学报,2012,63(S2):166-169. 被引量:8
  • 2李蒙,陈曦,张华.二氧化碳热泵热水器微通道气体冷却器的仿真分析[J].化工学报,2008,59(S2):143-147. 被引量:10
  • 3Lorentzen G. Revival of carbon dioxide as a refrigerants [J]. International Journal of Refrigeration, 1994, 17(5): 292-301.
  • 4Yokoyama R, Wakui T, Kamakari J, Kazuhisa T. Performance analysis of a CO2 heat pump water heating system under a daily change in a standardized demand [J]. Energy, 2010, 35(2): 718-728.
  • 5Ma Y T, Liu Z Y, Tian H. A review of transcritical carbon dioxide heat pump and refrigeration cycles [J]. Energy, 2013, 55(C): 156-172.
  • 6Austin B T, Sumathy K. Transcritical carbon dioxide heat pump system: a review [J]. Renewable and Sustainable Energy Reviews, 2011, 31(17/18): 3774-3782.
  • 7Agrawal N, Bhattacharyya S, Sarkar J. Optimization of two-stage transcritical carbon dioxide heat pump cycles [J]. International Journal of Thermal Sciences, 2007, 46(2): 180-187.
  • 8Lorentzen G. The use of natural refrigerants: a complete solution to the CFC/HCFC predicament [J]. International Journal of Refrigeration, 1995, 18(3): 190-197.
  • 9Nakagawa M, Marasigan A R, Matsukawa T. Experimental analysis on the effect of internal heat exchanger in transcritical CO2 refrigeration cycle with two-phase ejector [J]. International Journal of Refrigeration, 2011, 34(7): 1577-1586.
  • 10Sarkar J, Souvik B, Gopal M R. Simulation of a transcritical CO2 heat pump cycle for simultaneous cooling and heating application [J]. International Journal of Refrigeration, 2006, 29: 735-743.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部