期刊文献+

Al_2O_3纳米流体相变特性的DSC研究 被引量:4

Phase Change Characteritics of Al_2O_3-H_2O Nano-fluids Measured by DSC
下载PDF
导出
摘要 纳米流体相变时所体现出的特性是其作为蓄冷相变材料使用的重要基础。利用差示扫描量热法分别测量了纳米颗粒粒径为10nm、20nm、50nm、100nm、500nm,质量分数为5%、10%、12%、15%、20%,以及降温速率为2℃/min、3℃/min、5℃/min、7℃/min、9℃/min的Al2O3纳米流体的凝固点、冰点、融化点、比热及相变潜热的影响。测量结果表明:纳米流体的凝固点、冰点值都高于去离子水;随着颗粒粒径、质量分数和降温速率的增加,纳米流体的凝固点、冰点逐渐升高,而比热值逐渐减小。融化温度随着颗粒粒径、质量分数的增加而增加,且随着降温速率的增加而小幅度的降低。去离子水的相变潜热值高于纳米流体的潜热值;随着纳米颗粒粒径的增加,潜热值越大;随着质量分数和降温速率的增加,相变潜热值越小。 As a new phase-change cold storage materials, the thermal properties of nano-fluids are important for its further application. The effect of diameter, mass fraction and cooling rate to solidification point, freezing point, melting temperature, specific heat capacity and latent heat of AlO3was measured by Differential Scanning Calorimetry (DSC). The diameter of nanoparticle is 10nm, 20nm, 50nm, 100nm, 500nm. The mass fraction is 5% , 10% , 12% , 15% , 20%. The cooling rate is 2℃/min, 3℃/min,5℃/min,7℃/min,9℃/ min. The results show that the nanoparticle plays a critical role on cool storage. The solidification point and freezing point of nanofluids are higher than the deionized water. With the increase of nanoparticle sizes, mass fraction and cooling rate, the solidification point and freezing point of nanofluids will increase, and the specific heat capacity of nanofluids will decrease. The melting temperature will increase with the increase of nanoparticle sizes, mass fraction, and also decrease with the increase of cooling rate. The latent heat of deionized water is higher than the nanofluids'. The latent heat of nanofluids will increase with the increase of diameter of nanoparticle and decrease with the increase of mass fraction and cooling rate.
出处 《制冷学报》 CAS CSCD 北大核心 2014年第1期33-37,共5页 Journal of Refrigeration
基金 十二五国家科技支撑计划重点项目(2011BAD 24B01)资助~~
关键词 DSC 纳米流体 相变特性 质量分数 颗粒粒径 降温速率 DSC nano-fluids phase change characteritics mass fraction diameter cooling rate
  • 相关文献

参考文献6

二级参考文献30

  • 1李文波,薛锋,丁恩勇,程时.差示扫描量热仪对物质相变潜热的精确量度[J].分析测试学报,2006,25(2):16-19. 被引量:7
  • 2Das S K, Choi S U S, Patel H E. Heat transfer in nanofluids - a review[J]. Heat Transfer Engineering, 2006, 27 (10) : 3-19.
  • 3Chein R, Chuang J. Experimental microchannel heat sink performance studies using nanofluids[J]. International Journal of Thermal Sciences, 2007, 46: 57-66.
  • 4Tzeng S C, Lin C W, Huang K D, et al. Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles[J]. Acta Mechanica, 2005, 179:11-23.
  • 5Wang X Q, Mujumdar A S. Heat transfer characteristics of nanofluids: a review[J]. International Journal of Thermal Sciences, 2007, 46: 1-19.
  • 6Choi S U S. Enhancement thermal conductivity of fluids with nanoparticles[J]. ASME Publications, 1995 (66/231):99-105.
  • 7Khodadadi.J.M,Hosseinizadeh.S.F.Nanoparticle enhanced phase change materials (NEPCM)with great potential for improved thermal energy storage[J]. International Communications in Heat and Mass Transfer, 2007, 34: 534-543.
  • 8Khanafer K, Vafai K,Lightstone M.Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J]. International Journal of Heat and Mass Transfer ,2003,46 (19):3639-3653.
  • 9Scok P J, S U S Choi. Role of Brownian notion in the enhanced thermal conductivity of nanofluids[J]. Applied Physics Letters, 2004, 84 (21) : 4316-4318.
  • 10[1]Eastman J A,Choi U S,Li S,Thompson L J,Lee S.Enhanced Thermal Conductivity Through the Development of Nanofluids.In: Komarneni S,Parker J C,Wollenberger H J, eds. Proceedings of the Symposium on Nanophase and Nanocomposite Materials.Boston: Materials Research Society, Pittsburgh, PA, 1997. 3-11

共引文献111

同被引文献36

  • 1蔡敏,陈焕新,朱先锋.冷板冷藏车中货物堆码对其温度场的影响[J].铁道科学与工程学报,2005,2(3):78-82. 被引量:16
  • 2何钦波,童明伟,刘玉东.低温相变蓄冷纳米流体成核过冷度的实验研究[J].制冷学报,2007,28(4):33-36. 被引量:47
  • 3朱冬生,李新芳,王先菊,李华,高进伟.氧化铝-水纳米流体的制备及其分散性研究[J].化工新型材料,2007,35(9):45-47. 被引量:24
  • 4宋玖环,贾代勇,杜雁霞.相变材料蓄冷的经济性分析[J].制冷空调与电力机械,2007,28(6):18-21. 被引量:7
  • 5Kakuichi H, Yamazaki M, Yabe M, et al. A study of erythriol as phase change material[ C ]//Proceedings of the 2nd workshop lEA annex 10. Sofia: International Energy Agency, 1998: 11-13.
  • 6Agyenim F, Eames P, Smyth M. Experimental study on the melting and solidification behaviour of a medium tem- perature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H20 absorption cool- ing system [ J ]. Renewable Energy, 2011, 36 (1 ) : 108- 117.
  • 7Shukla A, Buddhi D, Sharma S D, et al. Accelerated thermal cycle test of erythritol for the latent heat storage ap- plication [ C ]//Proceedings of the EM4 Indore workshop lEA ECES IA annex 17. Indore, India: Renewable Sus- tainable Energy Review, 2003.
  • 8Agyenim F, Hewitt N, Eames P, et al. A review of materi- als, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) [J]. Renewable and Sustainable Energy, 2010, 14: 615- 628.
  • 9Chen C R, Atul S, Tyagi S K, et al. Numerical heat trans- fer studies of PCMs used in a box-type solar cooker [ J ]. Renewable Energy, 2008, 33 (5) : 1211-1129.
  • 10章学来,韩中,杨阳.等.耦合式相变移动供热装置及其供热方法,CN201210069036.6[P].2012-07-04.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部