期刊文献+

基于访问量预测的数据中心自适应节能机制 被引量:3

Adaptive Energy-saving Mechanism of Data Center Based on Access Quantity Prediction
下载PDF
导出
摘要 为能在保证服务质量的前提下提高数据中心能源利用率,提出一种基于用户访问量预测的数据中心虚拟机自适应节能机制,根据自适应Holt-Winters(AHW)预测法研究互联网用户访问行为的周期性,使其能根据用户访问量自适应地调整虚拟机数量以提高虚拟机的利用率,达到减少数据中心能耗的目的。仿真实验结果显示,AHW预测法最高平均绝对百分误差为22.46%,基于AHW预测法的数据中心虚拟机利用率为97.88%,相比未采用节能机制时提高了37.19%,从而证明该节能机制对周期性用户访问进行预测时具有较好的统计性能和较强的鲁棒性,能更好地满足数据中心节能的需求。 In order to improve the energy utilization rate in data center on the premise of guaranteeing Quality of Service(QoS), this paper proposes a data center Virtual Machine(VM) adaptive energy-saving mechanism based on the prediction of users' access quantity, and researches periodicity of users' visit by Adaptive Holt-Winters(AHW) prediction method. It can adaptively adjust the number of VM according to user visits to improve the utilization rate of VM and achieve the purpose of reducing data center energy consumption. Simulation experimental results show that the Mean Absolute Percentage Error(MAPE) of AHW method is 22.46% and the utilization rate of VM in data center is 97.88% which is promoted by 37.19% compared with the former utilization without using this adaptive energy-saving mechanism, and proves that this energy-saving mechanism has good statistical properties and stability for forecasting the periodic user access, it can be better satisfy the needs of data center energy-efficient.
出处 《计算机工程》 CAS CSCD 2014年第2期6-10,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61074033) 教育部博士点基金资助项目(20093402110019)
关键词 云计算 数据中心 虚拟机 节能 自适应Holt—Winters预测 极大似然估计 cloud computing data center Virtual Machine(VM) energy-saving Adaptive Holt-Winters(AHW) prediction MaximumLikelihood Estimation(MLE)
  • 相关文献

参考文献5

二级参考文献26

  • 1赛迪顾问股份有限公司.2009-2010年中国数据中心IT应用市场研究年度报告[R].北京,2010.
  • 2赛迪顾问股份有限公司.2009-2010年中国X86服务器市场研究年度报告[R].北京,2010.
  • 3赛迪顾问股份有限公司.2009-2010年中国Non-X86服务器市场研究年度报告[R].北京,2010.
  • 4洪钊峰,大公.2008-2009年服务器新技术应用状况调查[EB/OL].http://server.it168.com/a2009/0116/2631000000263296-1.shtml,2009-01-19.
  • 5U.S.Environmental Protection Agency.Report to Congress on Server and Data Center Energy Efficiency-public law 109-431[R].Washington,2007.
  • 6Koomey,J.G..Estimating total power consumption by servers in the U.S.and the world[EB/OL].http://enterprise.amd,com/Downloads/svrpwrusecompletefinal.pdf,2007-02-15.
  • 7Isci C, Contreras G, Martonosi M. Live, Runtime Phase Monitor- ing and Prediction on Real Systems with Application to Dynamic Power Management[C]//Proc. of the 39th Annual IEEE/ACM International Symposium on Microarchitecture. Orlando, USA: [s. n.], 2006: 359-370.
  • 8Kalyvianaki E, Charalambous T, Hand S. Self-adaptive and Self- configured CPU Resource Provisioning for Virtualized Servers Using Kalman Filters[C]//Proc. of the 6th International Conference on Autonomic Computing. Barcelona, Spain: [s. n.], 2009: 117-126.
  • 9Bennani M N, Menasc D A. Resource Allocation for Autonomic Data Centers Using Analytic Performance Models[C]//Proc. of the 2nd International Conference on Autonomic Computing. Washington D. C., USA: [s. n.], 2005: 229-240.
  • 10Almeida J, Almeida V, Ardagna D, et al. Joint Admission Control and Resource Allocation in Virtualized Servers[J]. Journal of Parallel and Distributed Computing, 2010, 70(4): 344-362.

共引文献288

同被引文献23

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部