期刊文献+

求强规划解的快速状态分层算法

Fast Hierarchical States Algorithm for Solving Strong Planning
下载PDF
导出
摘要 在求强规划解时,通过状态分层可以大幅减少问题规模,提高搜索效率,并能得到规划路径较短的强规划解。但现有分层算法本身有一定的复杂度,在状态较多时开销较大。为此,通过改进已有分层算法,设计一种适用于求强规划解的快速状态分层算法。采用链式双向图结构保存数据,在分层时修改已遍历的状态动作序偶,并根据修改结果直接进行分层判断,使得分层时只需要判断前一层状态而不是所有已分层状态,避免对非必要状态转移的搜索以及对必要状态转移的重复搜索。实验结果表明,该算法的分层速度优于已有的矩阵乘分层算法。 When solving strong plan, through using hierarchical states, it can sharply reduce the scale of the problem, boost search, and it can get the solution of shorter path. But existing hierarchy algorithms are still complex in some extent, and when the number of states is big, it costs large. Based on the ideal of hierarchy, it designs a fast hierarchy algorithm. It uses bidirectional chain graph to save data. In hierarchy, it directly modifies traversed state-action pair, and according to the modified results to make decision directly. With that, only one previous hierarchy is needed to judge rather than all hierarchical states. And it avoids searching the state transition of unnecessary and avoids repeat searching on necessary state transition. Experimental result shows that this algorithm runs more quickly than similar algorithms such as the matrix multiplication hierarchy algorithm.
出处 《计算机工程》 CAS CSCD 2014年第2期35-38,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61070232 61272295)
关键词 不确定规划 强规划 状态分层 智能规划 状态动作序偶 nondeterministic planning strong planning hierarchical states intelligent planning state-action pair
  • 相关文献

参考文献3

二级参考文献23

  • 1Ghallab M, Nau D, Traverso P. Automated Planning Theory and Practice. Morgan Kaufmann Publishers, 2004.
  • 2Weld DS. Recent advances in AI planning. A1 Magazine, 1999,20(2):93-123.
  • 3Yang Q, Wu KH, Jiang YF. Learning action models from plan examples using weighted Max-SAT. Artificial Intelligence, 2007, 171(2-3):107-143.
  • 4Gil Y. Description logics and planning. AI Magazine, 2005,26(2):73-84.
  • 5Cimatti A, Roveri M. Conforrnant planning via symbolic model checking. Journal of Artificial Intelligence Research, 2000,13: 305-338.
  • 6Cimatti A, Pistore M, Rovveri M, Traverso P. Weak, strong, and strong cyclic planning via symbolic model checking. Artificial Intelligence, 2003,147(1-2):35-84.
  • 7Huang W, Wen ZH, Jiang YF, Wu LH. Observation reduction for strong plans. In: Veloso MM, ed. Proc. of the 20th Int'l Joint Conf. on Artificial Intelligence (IJCAI 2007). AAAI Press, 2007. 1930-1935.
  • 8Cimatti A, Roveri M. Conformant planning via model checking and heuristic search. Artificial Intelligence, 2004,159(1-2): 127-206.
  • 9Huang W, Wen ZH, Jiang YF, Chen AX. Comparison between two languages used to express planning goals: CTL and EAGLE. In: Yang Q, Webb G, eds. Proc. of the 9th Pacific Rim Int'l Conf. on Artificial Intelligence (PRICAI 2006). Berlin: Springer-Verlag, 2006. 180-189.
  • 10Cimatti A, Roveri M, Traverso P. Automatic OBDD-based generation of universal plans in non-deterministic domains. In: Mostow J, Rich C, eds. Proc. of the 15th National Conf. on Artificial Intelligence (AAAI'98). AAAI Press, 1998. 875-881.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部