期刊文献+

基于压缩感知的图像重构算法 被引量:9

Image Reconstruction Algorithm Based on Compressed Sensing
下载PDF
导出
摘要 在图像压缩感知中,梯度投影恢复算法存在收敛速度慢、迭代次数多、对数据稀疏度过分敏感的问题。为此,提出一种基于压缩感知的图像重构算法。将拟牛顿法引入稀疏梯度投影算法中,利用拟牛顿法的估计校正机制以及其全局超线性收敛性,通过对目标函数的校正,获得更精确的搜索方向,从而减少迭代次数,构成有效收敛的图像恢复算法。实验结果表明,与传统梯度投影恢复算法相比,该算法在保证较好图像恢复效果的同时具有较好的抗噪性能,并且在减少迭代次数的基础上能有效降低重构误差,得到稳定收敛的重构结果。 There are some problems in the typical gradient projection algorithms in the application of Compressed Sensing(CS), such as the large amount of calculation, the low efficiency of convergence process and excessive dependence on the sparsity of the data matrix. In order to deal with these problems, an efficient recovery algorithm is proposed. This algorithm is based on CS which combines the Quasi-Newton method and the gradient projection method. So it can make full use of the estimating and correcting procedure and the global superlinear convergence of the Quasi-Newton method. By correcting the objective function with the Quasi-Newton method, a more accurate searching direction and fewer iteration can be got. It makes the algorithm perform efficiently with a high convergent reconstruction based on compressed sensing. Experimental results prove that this algorithm shows a good reconstruction and anti-noise performance. Compared with the traditional gradient projection recovery method, the proposed method drops the error rate to make a more stable and convergent reconstruction with fewer iteration.
出处 《计算机工程》 CAS CSCD 2014年第2期229-232,共4页 Computer Engineering
基金 广东省教育部产学研结合基金资助项目(2009B090300302)
关键词 压缩感知 梯度投影 拟牛顿法 重构 稳定性 收敛性 Compressed Sensing(CS) gradient projection Quasi-Newton method reconstruction stability convergence
  • 相关文献

参考文献13

  • 1Donoho D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E J. Compressive Sampling[C]//Proc. of International Congress of Mathematicians. Madrid, Spain: [s. n.], 2006: 1433-1452.
  • 3方红,杨海蓉.贪婪算法与压缩感知理论[J].自动化学报,2011,37(12):1413-1421. 被引量:101
  • 4Gilbert A C, Guha S, Indyk P, et al. Near-optimal Sparse Fourier Representations via Sampling[C]//Proc. of Annual ACM Symposium on Theory of Computing. Montreal, Canada: Association for Computing Machinery, 2002:152-161.
  • 5Maleki A, Donoho D L. Optimally Tuned Iterative Re- construction Algorithms for Compressed Sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 330-341.
  • 6Hager W W, Park S. The Gradient Projection Method with Exact Line Search[J]. Journal of Global Optimization, 2004, 30(1): 103-118.
  • 7郑万泽,何劲,魏星,颜佳冰,耿晓明.基于Contourlet变换的图像压缩感知重构[J].计算机工程,2012,38(12):194-196. 被引量:5
  • 8Shanno D F. Conditioning of Quasi-Newton Method for Function Minimization[J]. Mathematics of Computation, 1970, 24(111): 647-656.
  • 9时贞军,孙国.无约束优化问题的对角稀疏拟牛顿法[J].系统科学与数学,2006,26(1):101-112. 被引量:32
  • 10石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:713

二级参考文献108

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献843

同被引文献69

  • 1杜培军,谭琨,夏俊士.高光谱遥感影像分类与支持向量机应用研究[M].北京:科学出版社,2012.
  • 2Beach.A.(作).视频压缩宝典[M].田尊华(译),程钢(译).北京:清华大学出版社,2009:307-351.
  • 3陈靖.深入理解视频编解码技术:基于H.264标准及参考模型[M].北京:北京航空航天大学出版社,2012:28-35.
  • 4Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 5宁刚.基于压缩感知的信号重构算法研究[D].吉林:吉林大学硕士研究生学位论文,2010.
  • 6A.G.Dimakis,R.Smarandache,P.O.Vontobel.LDPC codes for compressed sensing[J].IEEE Transactions on Information Theory,2011:1-20.
  • 7Zhang Y,Mei S,Chen Q,et al.A multiple description image/video coding method by compressed sensing theory[C]//Circuits and Systems,2008.ISCAS 2008.IEEE International Symposium on,2008.IEEE,2008:1830-1833.
  • 8范坤.基于压缩感知的图像与视频编码研究[D].南京:南京邮电大学硕士研究生论文,2013.
  • 9Donoho D L.Compressed Sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 10Candes E.Compressive Sampling[C]//Proceedings of International Congress of Mathematicians,Madrid,Spain:[s.n.],2006:1433-1452.

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部