摘要
Jacobi算子是Sturm-Liouville算子的离散化,通过对无穷维Jacobi算子的特征值的性质进行探讨,得出了无穷维Jacobi算子的特征值对其系数具有连续依赖性的结论,并给出了严格的数学证明.
The Jacobi operators is the discrete form of Sturm - Liouville operators. Through inquiring into the properties of eigen- values to Jacobi operators with infinite dimensions a very nice conclusion was obtained: Eigenvalues to Jacobi operators with infi- nite dimensions depend on its coefficient in succession with the strict mathematical proof.
出处
《宜宾学院学报》
2013年第12期5-7,共3页
Journal of Yibin University
基金
宜宾学院科研启动项目(2012Q13)
关键词
无穷维Jacobi算子
特征值
连续依赖性
Jaeobi operators with infinite dimensions
eigenvalues
continuous dependence.