期刊文献+

基于递推CRLB的被动定位跟踪精度分析

Passive Location and Tracking Precision Analysis Based on Iterative CRLB
下载PDF
导出
摘要 针对无源探测下存在探测概率低、数据率低、精度较低等问题,为了提高目标定位跟踪精度,利用克莱默下界(CRLB)理论,推导了不完全量测下最优估计方差下界公式。从而分析以上因素对目标跟踪的影响,为设计跟踪系统提供指标参考。理论仿真与KALMAN滤波数值仿真表明,在无法提高观测器精度的情形下,通过提高系统灵敏度以提升信号截获概率,增加分布式布站组网探测关联融合提高信息数据率,能显著提高被动定位跟踪精度。 According to the low probability of interception,low data rate,and low accuracy of measurement in passive location,a formula of optimal estimate variance low bound is presentes for uncertain observation by utilizing CRLB. Further these factors on the effect of target tracking are analyzed,and the analysis report provided a reference for the design of the tracking system. The theory simulation and KALMAN filter simulation indicates that the passive location and tracking accuracy can be improved by enhancing the system sensitivity and increasing the number of distributed network observation equipment.
出处 《火力与指挥控制》 CSCD 北大核心 2014年第1期58-62,共5页 Fire Control & Command Control
关键词 被动定位跟踪 探测概率 数据率 CRLB CRLB passive location and tracking detection probability data rate
  • 相关文献

参考文献6

  • 1Costa S I,Santos S A,Strapasson J. Fisher Information Matrix and Hyperbolic Geometry[A].2005.34-36.
  • 2Ristic B,Farina A,Hernandez M. Cramer-Rao Lower Bound for Tracking Multiple Targets[J].IEE Proc on Rader Sonar and Navigation,2004,(3):129-134.
  • 3Kay S,Xu C H. CRLB via the Characteristic Function with Application to the K-Distribution[J].{H}IEEE Transactions on Aerospace and Electronic Systems,2008,(3):1161-1168.
  • 4Zhang J J,Ghassan M. Cra mér-Rao Lower Bounds for the Joint Estimation of Target Attributes Using MIMO Radar[A].2009.103-107.
  • 5王国宏,许建峰,毛士艺,何友.2D雷达组网中目标高度估计误差的Cramér-Rao限[J].航空学报,2004,25(1):66-68. 被引量:18
  • 6占荣辉,郁春来,辛勤,万建伟.机动目标跟踪误差CRLB计算与分析[J].国防科技大学学报,2007,29(5):89-94. 被引量:7

二级参考文献17

  • 1He You Wang Guohong Tang Jinsong(Naval Aeronautical Academy, Yantai 264001).CENTRALIZED MULTIRADAR INTEGRATED TRACKING[J].Journal of Electronics(China),1996,13(4):303-309. 被引量:3
  • 2[1]Chen Y T,Hu A G C,Plant J B.A Kalman Filter Based Tracking Scheme with Input Estimation[J].IEEE Trans.Aerosp.Electron.Syst.,1979,15 (3):237-244.
  • 3[2]Bar-Shalom Y,Birmiwal K.Variable Dimension Filter for Maneuvering Target Tracking[J].IEEE Trans.Aerosp.Electron.Syst.,1982,18(5):621-629.
  • 4[4]Mazor E,Averbuch A Y,Bar-Shalom Y,et al.Interacting Multiple Model Methods in Target Tracking:A Survey[J].IEEE Trans.Aerosp.Electron.Syst.,1998,34 (1):103-123.
  • 5[5]Ristic B,Arulampalam S.Tracking a Manoeuvring Target Using Angle-only Measurements:Algorithms and Performance[J].Signal Processing,2003,83(6):1223-1238.
  • 6[6]Duh F B,Lin C T.Tracking a Maneuvering Target Using Neural Fuzzy Network[J].IEEE Trans.Syst.,Man,Cybem.B,2004,34 (1):16 -33.
  • 7[7]Li X R,Jilkon V P.Survey of Maneuvering Target Tracking-Part Ⅰ:Dynamic Models[J].IEEE Trans.Aerosp.Electron.Syst.,2003,39(4):1333-1364.
  • 8[8]Bkcker.A General Approach to TMA Observability from Angle and Frequency Measurements[J].IEEE Trans.Aerosp.Electron.Syst.,1996,32(1):487-494.
  • 9[9]Key S M.统计信号处理基础[M].罗鹏飞,译.北京:电子工业出版社,2003.
  • 10Blackman S, Popoli R. Design and analysis of modern tracking systems[ M ]. Artech House, Boston, London, 1999: 259 -319.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部