期刊文献+

Synthesis,Characterization and Biocompatibility of Potassium Ferrite Nanoparticles 被引量:3

Synthesis,Characterization and Biocompatibility of Potassium Ferrite Nanoparticles
原文传递
导出
摘要 In the present study, morphology, size distribution, structure, biocompatibility and magnetic properties of potassium ferrite nanoparticles (KFeO2 NPs), synthesized by conventional sol-gel method have been reported. The formation of spherical nanoparticles with orthorhombic structure has been confirmed by scanning electron microscopy and X-ray diffraction. The particle size, as obtained by transmission electron microscopy has been found to be in the range of 4-7 nm. Further, the size distribution has been scrutinized using Analyse-it software, where a platykurtic feature in the size distribution was observed. Fourier transform-infrared spectroscopy and thermogravimetric analysis showed the formation of metal (Fe, K) bonds at Neel temperature of 337℃. Vibrating sample magnetometer analysis revealed the superparamagnetic behaviour of the synthesized KFeO2 NPs, with saturation magnetization of 25.72 emu/g. In vitro cytotoxicity test, using MTTassay, on T cell lines (Jurkat cells) showed that KFeO2 NPs are biocompatible at a particle concentration of 100μg/ml. In the present study, morphology, size distribution, structure, biocompatibility and magnetic properties of potassium ferrite nanoparticles (KFeO2 NPs), synthesized by conventional sol-gel method have been reported. The formation of spherical nanoparticles with orthorhombic structure has been confirmed by scanning electron microscopy and X-ray diffraction. The particle size, as obtained by transmission electron microscopy has been found to be in the range of 4-7 nm. Further, the size distribution has been scrutinized using Analyse-it software, where a platykurtic feature in the size distribution was observed. Fourier transform-infrared spectroscopy and thermogravimetric analysis showed the formation of metal (Fe, K) bonds at Neel temperature of 337℃. Vibrating sample magnetometer analysis revealed the superparamagnetic behaviour of the synthesized KFeO2 NPs, with saturation magnetization of 25.72 emu/g. In vitro cytotoxicity test, using MTTassay, on T cell lines (Jurkat cells) showed that KFeO2 NPs are biocompatible at a particle concentration of 100μg/ml.
机构地区 Nano Research Lab
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第1期30-36,共7页 材料科学技术(英文版)
基金 Department of Science and Technology,Government of India New Delhi for awarding her INSPIRE Fellowship
关键词 Potassium ferrite nanoparticles Magnetic nanoparticles Superparamagnetic behaviour BIOCOMPATIBILITY CYTOTOXICITY Potassium ferrite nanoparticles Magnetic nanoparticles Superparamagnetic behaviour Biocompatibility Cytotoxicity
  • 相关文献

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部