期刊文献+

基于脆性岩石破裂过程中特征点的能量密度研究 被引量:4

Energy Density Based on Characteristic Point During Rock Mass Failure Process
原文传递
导出
摘要 岩石的变形破坏过程分为5个阶段:压密阶段、弹性阶段、稳定破裂阶段、非稳定破裂阶段、峰后阶段.针对各阶段中的力学联系鲜有研究,本文结合重整化群理论与方法,引入岩石脆性度m值分析岩石变形破坏过程,构建岩石应力-应变曲线变形膨胀点与峰值强度点的力学联系,并以此建立岩石变形膨胀点与峰值强度点处能量密度联系,研究发现岩石变形膨胀点与峰值强度点处能量密度之比(E f/E cd)是一个只依赖岩石脆性度m值的常数,并以此建立脆性岩石破坏模型.结合相关脆性岩石单轴压缩试验,结果表明:实测数据(E f/E cd)与理论值趋势较为一致,且符合较好.说明本文建立的能量密度模型能够很好地诠释脆性完整岩石的变形破坏过程. Rock mass failure process is divided into several distinct deformation stages including compaction stage, elastic stage, stable failure stage, accelerated failure stage and post-peak stage. Although each individual stage is well studied, the quantified relationship between the stages has not been established yet. In this study, we first studied the mechanical relationship between the volume dilatant point and the peak stress point in the stress-strain curve of rock using renormalization group theory. Based on the relationship above, we builded up the energy relationship between the volume dilatant point and the peak stress point by introducing the shape parameter m. It is inferred that the energy ratio of the volume dilatant point and the peak stress point is solely the function of the shape parameter m. Several uniaxial compression tests are conducted to investigate the failure process of the granite specimens. It is found that the experimental results shares very similar trend to that from the theoretical model, our study demonstrates that the energy analysis protocol established by introducing the shape parameter m can be applied to the study of the failure process of brittle intact rock.
出处 《应用基础与工程科学学报》 EI CSCD 北大核心 2014年第1期35-44,共10页 Journal of Basic Science and Engineering
基金 国家自然科学基金委项目(41030750 41302233) 中国科学院工程地质力学重点实验室开放基金(KLEG201106) 中国博士后科学基金资助项目(2012M520376)
关键词 岩石破坏 膨胀点 峰值点 能量密度 损伤演化 rock failure volume dilatant point peak stress point energy density damage evolution
  • 相关文献

参考文献39

  • 1Seidel J P,Haberfield C M. The application of energy principles to the detrmination of the sliding resistance of rock joints[J].{H}Rock Mechanics and Rock Engineering,1995,(4):211-226.
  • 2Efimov V P. Estimate of initial energy of rock failure activation by measuring rock resistance[J].{H}JOURNAL OF MINING SCIENCE,2004,(5):503-507.
  • 3Crosta G B,Agliardi F. Failure forecast for large rock slides by surface displacement measurements[J].{H}Canadian Geotechnical Journal,2003.176-191.
  • 4Qin S Q,Jiao J J,Wang S J. A nonlinear dynamical model of landslide evolution[J].G eomorphology,2002.77-85.
  • 5Tang C A. Numerical simulation of progressive rock failure and associated seismicity[J].{H}International Journal of Rock Mechanics and Mining Sciences,1997.249-261.
  • 6Voight B. A relation to describe rate-dependent material failure[J].{H}SCIENCE,1989.200-203.
  • 7Eberhardt E. Twenty-ninth Canadian geotechnical colloquium:the role of advanced numerical methods and geotechnical fields measurements in understanding complex deep-seated rock slope failure mechanisms[J].Canadion Geotechmical Journal,2008.484-510.
  • 8Feigenbaum M J. Universal behavior in nonlinear systems[J].Physica D:Nonlinear Phenomena,1983.16-39.
  • 9Crosts G B,Agliardi F. How to obtain alert velocity thresholds for large rockslides[J].{H}Physics and Chemistry of the Earth,2002.1557-1565.
  • 10秦四清,徐锡伟,胡平,王媛媛,黄鑫,泮晓华.孕震断层的多锁固段脆性破裂机制与地震预测新方法的探索[J].地球物理学报,2010,53(4):1001-1014. 被引量:100

二级参考文献350

共引文献1706

同被引文献47

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部