期刊文献+

改进的多学科协同优化算法及其应用 被引量:2

An Improved Collaborative Optimization
下载PDF
导出
摘要 多学科优化设计(MDO)是当前复杂系统工程设计中研究最活跃的领域。分析了标准多学科协同优化算法解决实际复杂MDO问题计算困难的原因,提出了基于试验设计的近似模型和智能优化的协同优化算法(NCO)。NCO算法继承了标准协同优化分布并行的思想,采用现代智能算法优化系统级减小优化陷入局部解的可能性,以试验设计为基础的高精度近似模型代替学科真实模型降低计算成本,平滑数值噪声。通过经典MDO测试算例与Alexandrov提出的改进松弛协同优化比较,优化结果表明,NCO能有效提高收敛速率,保证收敛结果的稳定性和可靠性,能更好地满足复杂系统工程优化需要。 MDO(multidisciplinary design optimization) is the most active research area in current complex system engineering.Reasons of the defects of traditional collaborative optimization to solve the complex multidisciplinary are analyzed and a new collaborative optimization based on approximation models and intelligent optimization methods is proposed.Intelligent optimization methods help to reduce the possibility of falling into a local solution.Meanwhile,high precision approximation models relied on design of experiments also improve convergence rate and smooth the numerical noise.Classic example is adopted to test the new collaborative optimization.Results shows that the new collaborative optimization can effectively improve the rate of convergence,the stability and reliability of the optimization results.Meanwhile,the presented method is better to meet the needs of the complex system engineering.
出处 《计算机与数字工程》 2014年第1期65-68,116,共5页 Computer & Digital Engineering
关键词 协同优化 智能算法 试验设计 近似模型 collaborate optimization intelligent optimization design of experiments approximation models
  • 相关文献

参考文献5

二级参考文献30

共引文献112

同被引文献14

  • 1韩明红,邓家禔.协同优化算法的改进[J].机械工程学报,2006,42(11):34-38. 被引量:34
  • 2Ning A,Kroo I. Multidisciplinary considerations in the design ofwings and wing tip devices[J]. Journal of Aircraft,2010,47(2):534-543.
  • 3Roshanian J, Ebrahimi M, Taheri E, et al. Multidisciplinary de-sign optimization of space transportation control system usinggenetic algorithm[J]. Proceedings of the Institution of Mechani-cal Engineers. Part G: Journal of Aerospace Engineering, 2014,228(4):518-529.
  • 4Simpson T W, Martins J R R A. Multidisciplinary design optimi-zation for complex engineered systems: report from a nationalscience foundation workshop[J]. Journal of Mechanical Design,2011,133(10):1490-1495.
  • 5Li Y, Jiang Z,Meng P, et al. A Collaborative Optimization Me-thod for Solving Multi-objective Programming Problem[J]. In-ternational Journal of Advancements in Computing Technology,2013,5(1):809.
  • 6Li Ying, Wang Jing-sheng, Wei Li-xin. Collaborative optimiza-tion based on particle swarm optimization and chaos searching[C] // Control Conference (CCC), 2012 31st Chinese. IEEE,2012:2427-2431.
  • 7Vantaux A, Roux O. Magro A, et al. Evolutionary perspectiveson myrmecophily in ladybirds [J]. Psyche: A Journal of Ento-mology, 2012 ,2012:1-7.
  • 8Pettersson J,Ninkovic V,Glinwood R, et al. Foraging in a com-plex environment-semiochemicals support searching behaviourof the seven spot ladybird[J]. European Journal of Entomology,2005,102(3):365-370.
  • 9Padula S L, Alexandrov N,Green L L. MDO test suite at NASALangley Research Center [C] // Sixth Al A A/ NAS A/ ISSMOSymposium on Multidisciplinary Analysis and Optimization.1996:410420.
  • 10薛锋,王慈光,牟峰.基于信息熵和混沌理论的遗传-蚁群协同优化算法[J].控制与决策,2011,26(1):44-48. 被引量:11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部