期刊文献+

基于三维人体语义模型的人行为自然语言描述 被引量:3

NATURAL LANGUAGE DESCRIPTION OF HUMAN BEHAVIOUR BASED ON 3D SEMANTIC HUMAN BODY MODEL
下载PDF
导出
摘要 研究视频场景中人体行为自然语言描述的实现方法。首先建立三维人体的语义模型和主要的关节点运动模型,并建立人体运动语义描述基本数据库。应用图像自动场景标注技术来描述背景图像。通过人体简单动作的语义逻辑运算,得到人的组合动作和相互动作。将人的行为动作组合场景语义,从而准确描述出人在复杂场景的语义行为。最后建立简单的中文语法规则,得到人在场景中行为的自然语言描述。实验结果表明:与传统的二维模型相比,三维模型结合了场景语义并能解决遮挡问题,可以准确表达更为复杂的人类行为。 The implementation approach of natural language description of human body behaviour in video scene is studied in this paper. First,the 3D semantic human body model and the main joint point motion model are built,and the basic database of human body motion se-mantic description is also established.Automatic image scene annotation technology is applied to describe the background image.The combi-nation actions and mutual actions of human are derived from semantic logic operation of simple human body actions.Human behaviour motions are combined to the scene semantics,and then the human semantic behaviour in complex scenes are precisely described.Finally,the natural language description of human behaviour in scene is obtained by setting up the simple grammatical rules in Chinese.Experimental results show that the 3D model combines the scene semantics and can overcome the occlusion problem in comparison with traditional 2D model.
作者 李敏 刘恒
出处 《计算机应用与软件》 CSCD 北大核心 2014年第2期177-181,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61105020)
关键词 三维人体语义模型 图像自动标注技术 人体运动 人行为自然语言描述 3D semantic human body model Automatic image annotation technology Human body motion Natural language description of human behaviour
  • 相关文献

参考文献5

二级参考文献44

  • 1孙茂松,黄昌宁,高海燕,方捷.中文姓名的自动辨识[J].中文信息学报,1995,9(2):16-27. 被引量:87
  • 2黄萱菁,吴立德,王文欣,叶丹瑾.基于机器学习的无需人工编制词典的切词系统[J].模式识别与人工智能,1996,9(4):297-303. 被引量:24
  • 3孙茂松,黄昌宁,邹嘉彦,陆方,沈达阳.利用汉字二元语法关系解决汉语自动分词中的交集型歧义[J].计算机研究与发展,1997,34(5):332-339. 被引量:66
  • 4Ayala-Ram irez V, Parra C, Devy M. Active tracking based on Hausdorffmatching [ C -//IntemationlConference on Pat-tern Recognition, 2000,15:706 - 709.
  • 5章疏晋.图像分割[M].科学出版社,2001.
  • 6KRCastleman.数字图像处理[M].电子工业出版社,1998.
  • 7CollinsR T, Liu Y, LeordeanuM ,et al. Online selection of discriminative tracking features [ J ]. IEEE Transactions on Pattern Analysis andMachine Intelligence ,2005,27 (10) : 1631 - 1643.
  • 8Hsu D F,Lyons D M,Ai J,et al. Feature selection for real-time tracking [ C ]//Proceedings of SPIE. Kissimmee, FL, USA, 2006,6242:163 - 170.
  • 9Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence ,2003,25 (5) : 564 -575.
  • 10Hou Z, Han C, Zheng L, et al. A fastvisual tracking algorithm based on circle pixelsmatching [ C ]//Proceedings of the Sixth InternationalConference on Information Fusion. Cairns, Australia, 2003:291 - 295.

共引文献41

同被引文献32

  • 1韩磊,李君峰,贾云得.基于时空单词的两人交互行为识别方法[J].计算机学报,2010,33(4):1-11.
  • 2Fathi A, Mori G. Action recognition by learning mid-level motion fea- tures [ C ]/Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. EEE ,2008 : 1 - 8.
  • 3Yuan C,Li X,Hu W,et al. 3D R transform on spatio-temporal interest points for action recognition [ C ]//Computer Vision and Pattern Recog- nition (CVPR),2013 IEEE Conference on. IEEE,2013:724-730.
  • 4Zhang Z, Liu J. Reeognizing human action and identity based on affine- SIFT[ C ]//Electrical & Electronics Engineering ( EEESYM ), 2012 IEEE Symposium on. IEEE,2012:216 - 219.
  • 5Qin Y H, Li H L, Liu G H, et al. Human action recognition using PEM histogram[ C ]//Computational Problem-Solving ( ICCP ), 2010 Inter- national Conference on. IEEE ,2010:323 - 325.
  • 6Satpathy A, Jiang X, Eng H L. Extended histogram of gradients with asymmetric principal component and discriminant analyses for human detection [ C ]//Computer and Robot Vision ( CRV ), 2011 Canadian Conference on. IEEE ,2011:64 - 71.
  • 7Phung S L, Bouzerdoum A. Detecting people in images : An edge density approach [ J ]. Faculty of Informatics-Papers, 2007 : 517 - 523.
  • 8Csurka G, Dance C, Fan L, et al. Visual categorization with bags of key- points[ C ]//Workshop on statistical learning in computer vision, EC- CV.2004,1 (1 -22) :1 -2.
  • 9Gorelick L, Blank M, Shechtman E, et al. Actions as space-time shapes [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2007,29(12) :2247 -2253.
  • 10Lu M, Zhang L. Action Recognition by Fusing Spatial-Temporal Ap- pearance and the Local Distribution of Interest Points [ C ]//2014 Inter- national Conference on Future Computer and Communication Engineer-ing ( ICFCCE 2014 ). Atlantis Press ,2014:75.- 78.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部