期刊文献+

基于颜色空间和核函数的FCM图像分割算法 被引量:3

FCM IMAGE SEGMENTATION ALGORITHM BASED ON COLOUR SPACE AND KERNEL FUNCTION
下载PDF
导出
摘要 首先在确定模糊聚类的初始聚类数和初始聚类中心方面,引入颜色直方图应用于FCM聚类算法中。其次再将空间信息引入到FCM中,重建包含邻域信息的新的隶属度迭代函数。最后,用内核诱导距离取代原算法中的欧式距离,对实验图像的特征进行优化,并对算法进行评价对比。实验结果表明,该算法具有良好的分割质量和效果,并且也具有较强大的噪声抑制能力。 First,we introduce and apply the colour histogram to FCM clustering algorithm to determine the initial number of clusters and initial cluster centres of the fuzzy clustering.Then we bring spatial information to FCM to reconstruct the new membership iteration function containing neighbourhood information.Finally,we replace the original Euclidean distance in original algorithm with kernel-induced distance, and optimise the features of experimental image.The algorithm is also evaluated and compared.Experimental results show:this algorithm hasa good quality and effect in image segmentation,and has a stronger anti-nose ability as well.
作者 丁政建 孙进
机构地区 兰州理工大学
出处 《计算机应用与软件》 CSCD 北大核心 2014年第2期222-225,共4页 Computer Applications and Software
基金 国家自然科学基金项目(60773031 61175025)
关键词 模糊聚类 颜色空间 核函数 空间信息 Fuzzy clustering Colour space Kernel function Spatial information
  • 相关文献

参考文献12

  • 1Liu Yangxing,Ikenag T,Goto S. A fully automatic approach of color im-age edge detection[A].Taipei:IEEE,2006.16091612.
  • 2Li Gang,Yang Fan,Wang Linlin. An algorithm for remote sensing im-age edge detection based on fuzzy sets[A].2008.10871090.
  • 3Zhang D Q,Chen S C. Clustering incomplete data using kernel-based fuzzy c-means algorithm[J].{H}NEURAL PROCESSING LETTERS,2003,(03):155162.
  • 4Chen S C,Zhang D Q. Robust image segmentation using FCMwith spa-tial constraints based on new kernel-induce me asure[J].IEEE Trans on systems Man Cybernet PartB,2004,(04):19071916.
  • 5林开颜,徐立鸿,吴军辉.快速模糊C均值聚类彩色图像分割方法[J].中国图象图形学报(A辑),2004,9(2):159-163. 被引量:74
  • 6Zou Jin,Li Hongsong,Lin Bin. Color edge detection based on morphology[A].[S.I.]:IEEE,2006.291293.
  • 7Li Xiang,Lu xin,Tian jing. Application of fuzzy c-means cluste-ring in data analysis of metabolomics[J].{H}Analytical Chemistry,2009,(11):44684475.
  • 8Kang H,Pinti A,Vermeiren L. Tissue Classification for MRI of Thigh Using a Modified FCMMethod[A].2007.2326.
  • 9Liu Y,Ozawa S. A integrated color2spatial image representation and the similar image retrieval[A].Texas,Austin,Texas:IEEE,2000.283287.
  • 10Szilagyi L,Benyo Z,Szilagyii S M. MR brain image segmentation using an enhanced fuzzy e-means algorithm[A].2003.1721.

二级参考文献14

  • 1丁震,胡钟山,杨静宇,唐振民.FCM算法用于灰度图象分割的研究[J].电子学报,1997,25(5):39-43. 被引量:50
  • 2Cheng H D, Jiang X H, Sun Y, et al. Color image segmentation: advances and prospects [J]. Pattern Recognition,2001,34(12) : 2259-2281.
  • 3Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters [J]. J. Cybernet,1973,3(3) :32-57.
  • 4Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York : Plenum Press, 1981.
  • 5Yager Ronald R, Filev Dimitar P. Approximate Clustering Via the Mountain Method [J]. IEEE Transactions on System,Manand Cybern. , 1994,24(8) : 1279-1284.
  • 6Chiu S L. Fuzzy model identification based on cluster estimation[J]. J. Intelligent & Fuzzy Systems, 1994,2(3) : 267-278.
  • 7Xie X L, Beni G. A validity measure for fuzzy clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelllgnece, 1991,13(8) : 841-847.
  • 8Zahid N, Limouri M, Esseaid A. A new cluster-validity for fuzzy clustering[J]. Pattern Recognition, 1999,32(5):1089-1097.
  • 9Tao C W. Unsupervised fuzzy clustering with multi-center clusters [J]. Fuzzy Sets and Systems, 2002,128(3):305-322.
  • 10Pal Nikhil R, Bezdek James C. On cluster validity for the fuzzy c-means model[J]. IEEE Transactions on Fuzzy Systems,1995,3(3) :370-379.

共引文献73

同被引文献33

引证文献3

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部