摘要
提出初等相似变换的概念,探讨如何利用初等变换法求一个方阵的广义特征向量的方法。进一步将该方法用迭代算法来书写,这就为用Matlab编程求解矩阵的广义特征向量提供了条件。通过对两个矩阵的实例计算验证了该迭代方法能够较好地求解一般方阵的广义特征向量,比用通常的解线性方程组的方法要简单得多,且更易在计算机上用Matlab编程实现。
We put forward the concept of elementary similarity transformation in the paper,and discuss the method of how to use the elementary transformation to solve the generalised eigenvectors of a square matrix.Furthermore,we write this method in iteration algorithm, which provides the condition to solving the generalised eigenvectors of the square matrix with Matlab programming.Through computing the examples of two square matrixes it verifies that the iterative method can well solve the generalised eigenvectors of genetic square matrix.It is much simpler compared with usual method of leaner equation group solutions,and is easier to be implemented by Matlab programming in computer.
出处
《计算机应用与软件》
CSCD
北大核心
2014年第2期293-295,333,共4页
Computer Applications and Software
关键词
初等相似变换
广义特征向量
JORDAN标准形
迭代算法
Elementary similarity transformation
Generalised eigenvector
Jordan standard form
Iterative algorithm