期刊文献+

基于禁忌搜索的智能公交调度研究 被引量:5

Study on Intelligent Bus Scheduling Based on Tabuo Searching Method
下载PDF
导出
摘要 为了兼顾乘客群体和公交公司的满意度,提出了基于禁忌搜索的智能公交调度策略。其策略是以乘客群体和公交公司满意度之和最大为目标函数,采用禁忌搜索方法查找某车次公交车辆各时段的最优发车间隔,以便适应客流变化,减少乘客等车时间,并降低公交运营成本增加公交公司经济收益,从而解决基于固定发车间隔的公交调度不足。 In order to balance the satisfactions of passengers and bus companies, the intelligent bus scheduling strategy is proposed based on Tabu searching. In the strategy, maximizing the sum of the satisfactions of passen- gers and bus companies is taken as the objective function, the Tabu searching method is adopt to optimize the certain bus departure interval in different periods, to adapt the changes in passenger traffic, to reduce the passengers' waiting time, to decrease bus service costs and increase the economic benefits. Thereby the defi- ciency of the bus scheduling based on a fixed bus departure interval is solved.
作者 任晓莉
出处 《测控技术》 CSCD 北大核心 2014年第2期124-126,共3页 Measurement & Control Technology
基金 陕西省教育厅自然科学类专项项目(2013JK1198) 宝鸡文理学院院级重点项目(ZK11050)
关键词 禁忌搜索 智能公交调度 发车间隔 Tabu searching intelligent bus scheduling departure interval
  • 相关文献

参考文献6

二级参考文献19

  • 1任传祥,张海,范跃祖.混合遗传-模拟退火算法在公交智能调度中的应用[J].系统仿真学报,2005,17(9):2075-2077. 被引量:30
  • 2雷秀娟,史忠科,周亦鹏.PSO优化算法演变及其融合策略[J].计算机工程与应用,2007,43(7):90-92. 被引量:15
  • 3李秋生,张策,刘政华.基于神经网络和遗传算法的智能PID控制[J].计算机测量与控制,2007,15(5):610-612. 被引量:14
  • 4Kennedy J, Eberhart R C.Particle swarm optimization [C]//Preceedings of IEEE International Conference on Neural Networks.Piscataway, NJ: IEEE Service Center, 1995, IV: 1942-1948.
  • 5Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//Proceedings of the IEEE Congress on Evolutionary Computation.Piscataway, NJ: IEEE Press, 1998: 303-308.
  • 6Shi Y,Eberhart R C.Empirical study of particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation.Piscataway, NJ: IEEE Press, 1999:1945-1950.
  • 7Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in Particle Swarm Optimization[C]//Proceedings of the Congresson Evolutionary Computating,2000-84-88.
  • 8Holland J H. Adaptation in Nature and Artificial Systems [M]. MIT Press, Cambridge, 1992.
  • 9V.F.Hurdle, Minumum Cost Schedules for a Public Transportation Route-I. Theory [J]. Trnas. Sci. 7, 109-137.
  • 10Andre de Palma, Robin Lindsey, Optimal Timetable for Public Transportation [J]. Transportation Research Part B, 2001, 35:789-813.

共引文献50

同被引文献32

  • 1童刚.公交调度模型及算法[J].青岛科技大学学报(自然科学版),2004,25(3):253-257. 被引量:22
  • 2周晓云,吴兆根.RFID在公共交通领域的应用[J].中国无线电,2005(5):49-51. 被引量:9
  • 3蔡光跃,董恩清.遗传算法和蚁群算法在求解TSP问题上的对比分析[J].计算机工程与应用,2007,43(10):96-98. 被引量:29
  • 4孙芙灵.公交调度以及优化系统的研究与开发[D].西安:西安公路交通大学.1998.
  • 5Avishai Ceder.Methods for creating bus timetables.Transprot Part A,1986,21(1).
  • 6Yihua Li,Fujun Wu.Real—Time Scheduling Oil a Transit Bus Route.In Computer Scheduling of Public Transport,Springer-Verlag,1992:213-235.
  • 7Malacly Carey.Optimizing scheduled times allowing for behavioural response.Transportation Tesearch Part,1998,329-342.
  • 8X.J.Eberlein,N.H.M.Wilson,C.Bamhart,D.Bernstein.The Real—Time Deadheading Problem in Transit Operations contr01.Transportation Research Part B 1998,32,77-100.
  • 9Tan De-rong,Wang Jing,Liu Han-bo,Wang Xing-wei.The Optimization of Bus Scheduling Based on Genetic Algorithm.International Conference on Transportation,Mechanical,and Electrical Engineering(TMEE),2011.
  • 10Shi Liang,Zhaochen He,Zhiren Sha.Bus Rapid Transit Optimal Model Based on Genetic Algorithm.ICCTP,2011.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部