期刊文献+

基于遗传算法改进的洪水预报模型 被引量:2

Flood forecasting model based on improved genetic algorithm
下载PDF
导出
摘要 根据人工神经网络处理大规模非线性动力系统、遗传算法具有较好的寻优能力的特点,将二者有机的结合起来,提出了基于遗传算法改进的洪水预报模型,并将其应用于四川省达州市州河流域的水文预报。实验结果表明,本模型能够减少训练次数,提高预报精度,能更好的对洪水进行预报。 Based on artificial neural network can deal large-scale nonlinear dynamic system, genetic algorithm has good optimization ability, combined the two with their full advantages, proposed the flood forecast model that based on improved genetic algorithm, and applied to hydrological forecast to zhou river basin, Dazhou City, Sichuan Province. Experimental results show that the model can decrease the times of training and improve the prediction precision, better for flood forecast.
出处 《电子设计工程》 2014年第2期10-12,15,共4页 Electronic Design Engineering
基金 四川省教育厅2011年面上项目(11ZB139) 达州市2011年科技攻关项目(JCY1117)
关键词 神经网络 遗传算法 洪水预报 模型 neural network genetic algorithm flood forecasting model
  • 相关文献

同被引文献35

  • 1李满林,王玉娜,闻英友,杜雷,王光兴.蜂窝系统中一种固定信道分配方法的研究[J].小型微型计算机系统,2004,25(8):1420-1423. 被引量:7
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3徐俊杰,忻展红.基于微正则退火的频率分配方法[J].北京邮电大学学报,2007,30(2):67-70. 被引量:22
  • 4Coulibaly P, Baldwin C K. Nonstationary hydrological time se- ries forecasting using nonlinear dynamic methods [ J ]. Journal of Hydrology,2005,307 ( 1 ) : 164-174.
  • 5Chau K W. Application of a PSO-based neural network in a- nalysis of outcomes of construction claims [ J ]. Automation in Construction ,2007,16:642-646.
  • 6Yi Da,Ge Xiurun. An improved PSO-based ANN with simula- ted annealing technique [ J ]. Neurocomputing, 2005,63 : 527 - 533.
  • 7Huang Wenrui, Xu Bing, Chna-Hihon A. Forecasting flows in Apalachicola River using neural networks [ J ]. Hydrological Processes ,2004,18 ( 13 ) :2545-2564.
  • 8Kumar D N, Raju K S, Sathish T. River flow forecasting using recurrent neural networks [ J ]. Water Resources Mangaement, 2004,18:143-161.
  • 9Duque-Anton, Kunz D, Ruber B. Channel assignment for cellular radio using simulated annealing[J]. IEEE Transaction on Vehicular Technology, 1993, 42(I):14-21.
  • 10Kennedy J, Eberhart R C. Particle swarm optimization [C]// Proceedings of the IEEE International Conference on Neural Networks, 1995: 1942-1948.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部