期刊文献+

遥感影像的半监督判别局部排列降维 被引量:3

Dimensionality Reduction of Remote Sensing Image Using Semi-Supervised Discriminative Locality Alignment
下载PDF
导出
摘要 针对遥感影像数据具有的高维数和少量已标记样本的特性,提出一种基于图的半监督判别局部排列降维方法.首先,针对全部已标记和未标记样本数据构造相似图和惩罚图.然后,基于同类近邻点的分散度最小且不同类近邻点的分散度最大的原则,分别确立相似图和惩罚图上的优化目标.最后,通过同时优化这两种图上的目标函数,得到从高维到低维的最优映射关系,从而达到对高维遥感影像数据维数约简的目的.ROSIS高光谱数据上的实验结果表明,所提算法能够有效提高高维遥感影像的总体精度和Kappa系数. Aiming at remote sensing image data having properties of high-dimension and small amount of labeled samples,a dimensionality reduction algorithm called semi-supervised discriminative locality alignment based on graph is proposed. At first, a similarity graph and a penalty graph are constructed according to all labelled and unlabelled samples. Then,based on the principle that the dispersion between neighbours of the same class is minimum and that the dispersion between neighbours of different class is maximum,optimization goals on the similarity graph and on the penalty graph are respectively determined.At last,an optimal map- ping from the high-dimensional space to a low-dimensional subspace can be obtained by simultaneously optimizing the two objective functions, which makes the dimensionality reduction of high-dimensional remote sensing images realized. Experimental results on ROSIS hepectml data show that the proposed algorithm can effectively improved the overall accuracy and Kappa coefficient of high-dimensional remote sensing images. Koy words: semi-supervised;discriminative locality alignrnent;graph;dimensionality reduction;remote sensing image
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第1期84-88,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61072094 No.61273143) 教育部新世纪优秀人才支持计划(No.NCET-08-0836 No.NCET-10-0765) 教育部博士点基金(No.20110095110016 No.20120095110025) 霍英东教育基金会青年教师基金(No.121066)
关键词 半监督 判别局部排列 降维 遥感影像 Algorithms Alignment Dispersions Optimization
  • 相关文献

参考文献11

  • 1宋娟,李云松,吴成柯,王柯俨.基于L_∞最小搜索和陪集码的高光谱图像无损及近无损压缩[J].电子学报,2011,39(7):1551-1555. 被引量:12
  • 2C I Chang.Hyperspectral Data Exploitation:Theory and Applications[M].USA:John Wiley & Sons,Inc.2007.
  • 3S P Zhang.Studies of high spectral resolution atmospheric sounding data compression and noise reduction based on principal component analysis method [A].Proceedings of the 2nd International Conference on Image and Signal Processing [C].Piscataway:IEEE,2009.4693-4697.
  • 4M S Cui,S Prasad,M Mahrooghy,L M Bruce,J Aanstoos.Genetic algorithms and linear discriminant analysis based dimensionality reduction for remotely sensed image analysis [A].Proceedings of the International Geoscience and Remote Sensing Symposium [C].Piscataway:IEEE,2011.2373-2376.
  • 5J P Sun,Y Liu.The fusion arithmetic of multi-resolution remote sense image based on a modified fast independent component analysis [A].Proceedings of the 1st Asian and Pacific Conference on Synthetic Aperture Radar Proceedings [C].Piscataway:IEEE,2007.342-346.
  • 6X Wang,S Kumar,T Kaupp,B Upcroft,H F Durrant-Whyte.Applying ISOMAP to the learning of hyperspectral image [A].Proceedings of Australasian Conference on Robotics and Automation [C].Australia:ARAA,2005.109-112.
  • 7G Matijevic,A Prsa,J A Orosz,W F Welsh,S Bloemen,T Barclay.Kepler eclipsing binary stars III classification of Kepler eclipsing binary light curves with locally linear embedding[J].Astronomical Journal,2012,143(5):123-128.
  • 8Y Bengio,J F Paiement,P Vincent,O Delalleau,N L Roux,M Ouimet.Out-of-sample extensions for LLE,Isomap,MDS,eigenmaps,and spectral clustering [A].Proceedings of Advances in Neural Information Processing Systems [C].Massachusetts:The MIT Press,2003.184-191.
  • 9Y W Chen,X H Han.Classification of high-resolution satellite images using supervised locality preserving projections[J].Lecture Notes in Computer Science,2008,5178:149-156.
  • 10T H Zhang,D Tao,J Yang.Discriminative locality alignment[J].Lecture Notes in Computer Science,2008,5302:725-738.

二级参考文献11

  • 1柴焱,张晓玲,沈兰荪.一种基于2D/3D混合自适应预测的高光谱图像无损压缩方法[J].电子学报,2005,33(B12):2409-2412. 被引量:3
  • 2Ming-hsu Cheng, Meng-fen Ho, Chung-lin Huang. Gait analysis for human identification through manifold learning and HMM [J]. Pattern Recognition, 2008,41 (8) : 2541 - 2553.
  • 3M H C Law, A K Jain. Incremental nonlinear dimensionality reduction by manifold learning[ J]. WEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 ( 3 ) : 377 - 391.
  • 4J B Tenenbaum,V de Silva, J C Langford. A global geometric framework for nonlinear climensionality reduction[ J ]. Science, 2000,290(22) : 2319 - 2323.
  • 5S T Roweis, L K Saul. Nonlinear dimensionality reduction by locally linear embedding[ J ]. Science, 2000, 290(22) : 2323 - 2326.
  • 6M Belkin, P Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation[ J ]. Neural Computation, 2003, 15(6) : 1373 - 1396.
  • 7X F He, P Niyogi. Locality preserving projections[ A]. Neural Information Processing Systems16 [ C ]. Vancouver: MIT Press, 2004.153 - 160.
  • 8X F He, Y S Cheng, H Xiao, et al. Face recognition using laplacianfaces[ J]. IEEE Transaction Pattern Analysis and Machine Intelligence, 2002,27 (3) : 328 - 340.
  • 9H S Seung, D D Lee. The manifold ways of perception[ J]. Science, 2000,290(22 ) : 2268 - 2269.
  • 10陈省身,陈维桓.微分几何讲义[M].北京:北京大学出版社,1999.

共引文献26

同被引文献16

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部