期刊文献+

基于特征矢量稀疏分解的非圆信号DOA估计

A DOA estimation approach for non-circular signals based on sparse reconstruction via main eigenvectors. Electronic Engineering and Applications
下载PDF
导出
摘要 文中提出当信源为非圆信号时,基于特征矢量稀疏分解进行DOA估计;并在稀疏恢复过程中,比较空间范数变化对误差的影响。该方法对协方差矩阵进行了扩展,在利用L曲线方法自适应得到正则化参数的同时,对空间范数应用进行了推广。不仅提高信息利用率,能够处理相干信号源,而且不需要已知信号源数目,性能优于平滑处理过后的NC-MUSIC算法。 This articles addresses the problem of direction-of-arrival(DOA) estimation for non- circular signals via main eigenvectors, and an adaptive regularization parameter at different iteration steps is proposed in sparse reconstruction. This new method increases the availability of information and can handle coherent signal, without priori information about the number of signal sources. The performance of this method is compared with smoothing NC-MUSIC, through numerical studies.
出处 《中国科技信息》 2014年第3期50-53,共4页 China Science and Technology Information
关键词 特征矢量 非圆信号 正则化参数 稀疏分解 L曲线 eigenvectors non-circular signals regularization parameter sparse representation L-curve
  • 相关文献

参考文献8

  • 1Gounon P,Adnet C,Galy J. Angular localization for non circular signals[J].Traiterment du Signal,1998,(1):17-23.
  • 2李鹏飞,张旻,钟子发.基于特征矢量稀疏分解的DOA估计方法[J].电路与系统学报,2013(1):53-58. 被引量:4
  • 3Liu Z M,Huang Z T,Zhou Y Y. Direction-of-arrival estimation of noncircular signals via sparse representation[J].{H}IEEE Transactions on Aerospace and Electronic Systems,2012,(3):2690-2698.
  • 4Cadzow J A,Kim Y S,Shiue DC. General direction of arrival estimation:a signal subspace approach[J].{H}IEEE Transactions on Aerospace and Electronic Systems,1989,(1):31-46.
  • 5Rao B D,Delgado K K. An affine scaling methodology for best basis selection[J].{H}IEEE Transactions on Signal Processing,1999,(1):187-200.
  • 6Rao B D,Kjersti E,Cotter F S. Subset selection in noise based on diversity measure minimization[J].{H}IEEE Transactions on Signal Processing,2003,(3):760-770.
  • 7H marik U,Palm R,Raus T. A family of rules for parameter choice in Tikhonov regularization of ill-posed problems with inexact noise level[J].{H}Journal of Computational and Applied Mathematics,2012,(8):2146-2157.
  • 8王化祥,何永勃,朱学明.基于L曲线法的电容层析成像正则化参数优化[J].天津大学学报,2006,39(3):306-309. 被引量:18

二级参考文献19

  • 1陈国钧.建立多元线性回归方程的广义逆方法[J].武汉交通科技大学学报,1996,20(4):505-509. 被引量:4
  • 2Tikhonov A N, Arsenin V Y. Solutions of Ill-Posed Problems[M]. Washington, DC : Winston, 1977.
  • 3Engl H W. Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates[J].Optim Theory Appl,1987 , 52(2) :209-215.
  • 4Hanke M, Hansen P C. Regularization methods for large scale problems[J]. Surv Math Ind, 1993,3 (4) :253-315.
  • 5Rao C R, Mitra S K. Generalized Inverse of Matrices and Its Applications[ M]. New York:John Wiley and Sons, 1971.
  • 6Schmidt R O. Multiple emitter location and signal parameter estimation [J]. IEEE Trans. Antennas Propag., 1986, 34(3): 276-280.
  • 7Samadi S, C X, Etin M, et al. Sparse representation-based synthetic aperture radar imaging [J]. IET Radar, Sonar & Navigation, 2011, 5(2): 182-193.
  • 8Namgook C, Kuo C C J. Sparse Music Representation With Source-Specific Dictionaries and Its Application to Signal Separation [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(2): 326-337.
  • 9Dai D, Yang W. Satellite Image Classification via Two-Layer Sparse Coding With Biased Image Representation [J]. IEEE Geoseience andRemote Sensing Letters, 2011, 8(1): 173-176.
  • 10Namgook C, Kuo C C J. Sparse Representation of Musical Signals Using Source-Specific Dictionaries [J]. IEEE Signal Processing Letters, 2010, 17(11): 913-916.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部