期刊文献+

一种新的光伏发电预测模型的设计 被引量:3

A Model Design for the Forecasting of Photovoltaic System Power Generation Power
下载PDF
导出
摘要 为了对光伏发电的输出功率进行预测,本文分析光伏发电的影响因素,提出了一种基于太阳辐射功率曲线匹配的预测模型。该模型将历史数据按时段进行分解,查找与当前时段太阳辐射功率曲线最为匹配的数据,以此构建并训练BP神经网络,来预测未来3个小时内的太阳辐射功率,能够较好的实现预测目标。实验结果表明,该模型有较高的精度,可对电网调度起到重要的指导作用。 To predict the power of photovoltaic power generation, we analyzed the factors of photovoltaic power generation and proposed a method of predicting photovohaic power generation power based on the curve matching of solar radiation. By decomposing the historical data, searching the solar radiation curve, using the BP neural network, this method could predict photovoltaic power generation power within the next three hours and have a good performance. Experimental results show that this model can have a small forecasting error, which means that it's important in electric network management.
出处 《科技和产业》 2014年第2期146-150,共5页 Science Technology and Industry
关键词 光伏发电预测 太阳辐射曲线匹配 时段分解 BP神经网络 photovoltaic power predictions solar radiation curve matching period decompositions BP neural network
  • 相关文献

参考文献6

二级参考文献41

  • 1Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE Transactions on Power Electronics, 2005, 20(4): 963-973.
  • 2Kim I S, Kim M B, Youn M J. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1027-1035.
  • 3Xiao W, Lind M G J, Dunford W G, et al. Real-time identification of optimal operating points in photovoltaic power systems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1017-1026.
  • 4Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 97-109.
  • 5Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system[C]. IEEE Power Engineering Society General Meeting, 2007.
  • 6Tsikalakis A G, Hatziargyriou Nikos D. Centralized control for optimizing microgrids operation[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 24 1-248.
  • 7Kem E C, Culachenski E M, Ken G A. Cloud effects on distributed photovoltaic generation: slow transients at the gardner, massachusetts photovoltaic experiment[J]. IEEE Transactions on Energy Conversion, 1989,4(2): 184-190.
  • 8Jewell W T, Unruh T D. Limits on cloud-induced fluctuation in photovoltaic generation[J]. IEEE Transactions on Energy Conversion, 1999, 5(1):8-14.
  • 9Mellit A, Arab A H, Khorissi N, et al. An ANFIS-based forecasting for Solar radiation data from sunshine duration and ambient temperature[C]. IEEE Power Engineering Society General Meeting, 2007.
  • 10Sera D, Teodorescu R, Hantschel J, et al. Optimized maximum power point tracker for fast-changing environmental conditions[J]. IEEE Transactions on Industrial Electronics, 2008, 55(7):2629-2637.

共引文献406

同被引文献29

  • 1MARIA Grazia DE Giorgi,PAOLO Maria Congedo,MARIA Malvoni. Photovoltaic power forecasting using statistical methods: impact of weather data[J]. IET Science, Measurement and Technology,2014,8(3):1-8.
  • 2ATSUSHI Yona,TOMONOBU Senjyu,AHMED Yousuf Saber,et al. Application of Neural Network to One-Day-Ahead 24 hours Generating Power Forecasting for Photovoltaic System[C]//The 14th International Conference on Intelligent System Applications to Power Systems, Taiwan:[s, n],2007:442-447.
  • 3NIU Dong-xiao,WEI Yan-an,CHEN Yan-chao. Photovoltaic power prediction based on scene simulation knowledge mining and adaptive neural network[J]. Mathematical Problems in Engineering,2013,2013(2013):1-6.
  • 4Jaeger H,Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless telecommunication [J]. Science,2004,304(5667):78-80.
  • 5Lun S X, Du C J, Guo T T,et al. A new explicit I-V model of a solar cell based on Taylor's series expansion [J]. Solar Energy, 2013(94) :221-232.
  • 6Lun S X, Du C J, Yang G H,et al. An explicit approximate I-V characteristic model of a solar cell based on pads approximants [J]. Solar Energy, 2013(92) : 147-159.
  • 7Romero B, Pozo G del, Arredondo B, Exact analytical solution of a two diode circuit model for organic solar cells showing S-shape using Lambert W-functions [J]. Solar Energy, 2012(86) :3026-3029.
  • 8Yona A, Senjyu T, Saber A Y,et al, Application of neural network to one-day-ahead 24 hours generating power forecasting for photovohaic system [J]. The 14th International Conference on Intelligent System Applications to Power Systems, 2007,442-447.
  • 9Su Y, Chan L C, Shu L J, Tsui K L, Real-time prediction models for output power and efficiency of grld-eonneeted solar photovoltaie systems [J]. Applied Energy, 2012(93) : 319-326.
  • 10Niu D X, Wei Y, Chen Y C, photovoltaic power predi- ction based on scene simulation knowledge mining and adaptive neural network [J]. Mathematical Problems in Engineering, 2013 (8) : 206-232.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部