期刊文献+

基于模糊熵边缘信息同质性测度的对比度增强 被引量:3

Contrast Enhancement Using the Homogeneous Measurement of Edge Information Based on Fuzzy Entropy
下载PDF
导出
摘要 针对传统图像对比度增强方法存在局部区域过增强或增强不足等诸多问题,提出了一种基于模糊熵边缘点特征向量的同质性对比度增强算法.首先提取边缘特征信息,找到基于模糊熵边缘点特征向量的三个本质特征,然后用此来定义同质性,进而利用同质性增强的方法来进行对比度增强,得到增强图像.仿真结果表明:与其他传统的对比度增强方法相比,新方法图像增强效果明显,平均梯度、边缘强度、信息熵、增强度准则(EME)这4个客观标准均得到改善,很好地加强了细节信息. Abstract : In view of the problems of excessive or lack enhancement in traditional image contrast enhancement methods,a new homogeneous contrast enhancement algorithm based on fuzzy entropy edge points eigenvectors was proposed. Firstly, the edge feature information was extracted, that is, the three essential characteristics based on fuzzy entropy edge point eigenvectors were found; secondly, homogeneity was defined with the three characteristics; Finally, the image was enhanced by homogeneous contrast enhancement algorithm. The simu- lation results show that, compared with other traditional contrast enhancement methods, the new method ob- tains more obvious images, the average gradient, edge intensity, information entropy, and EME four objec- tive criteria are improved, and the enhanced image with new algorithm obtains better detail information.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2014年第1期76-82,共7页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(61071192 61271357) 山西省自然科学基金资助项目(2009011020-2) 山西省研究生优秀创新项目(20123098) 山西省高等学校优秀青年学术带头人支持计划资助项目
关键词 对比度 对比度增强 模糊熵 同质性 边缘点特征向量 contrast contrast enhancement fuzzy entropy homogeneity edge point eigen vector
  • 相关文献

参考文献17

  • 1Panetta K A, Wharton E J, Agaian S S. Human visual system-based image enhancement and logarithmic contrast measure[J]. Syst. , Man., Cybern. , Part B: Cybern. , 1EEE Trans. , 2008, 38(1) : 174-188.
  • 2Celik T, Tjahjadi T. Automatic image equalization and contrast enhancement using Gaussian mixture modeling [J]. Image Processing, IEEE Transactions on, 2012, 21 (1): 145-156.
  • 3Lee C, Lee C, Lee Y Y, et aI. Power-constrained cont- rast enhancement for emissive displays based on histogram equalization [ J ]. Image Processing, IEEE Transactions on, 2012, 21(1): 80-93.
  • 4Zaafouri A, Sayadi M, Fnaiech F. A developed unsharp masking method for images contrast enhancement [ C]. 8th International Multi-Conference on System, Signals and Devices. New York: IEEE, 2011: 1-6.
  • 5Sengee N, Sengee A, Choi H K. Image contrast en-hancement using bi-histogram equalization with neighbor- hood metrics[J]. Consumer Electronics, IEEE Transac- tions on, 2010, 56(4): 2727-2734.
  • 6. Zhang M H, Zhang Y Y. The application of adaptive en- hancement algorithm based on gray entropy in mammary gland CR image[C]. Consumer Electronics, Communica- tions and Networks (CECNet), 2012 2^nd International Conference on. IEEE, 2012: 2937-2940.
  • 7Chen S D. Preserving brightness in histogram equalization based contrast enhancement techniques[J]. Digital Signal Processing, 2004, 14(9): 413-428.
  • 8刘清团,汪天富,林江莉,李德玉.基于亮度不变的医学超声图像对比度增强方法[J].中国医学影像技术,2006,22(3):461-463. 被引量:11
  • 9Avci E, Avci D. An expert system based on fuzzy entropy for automatic threshold selection in image processing[J]. Expert Systems with Applications, 2009, 36(2): 3077- 3085.
  • 10Arici T, Dikbas S, Altunbasak Y. A histogram modifi- cation framework and its application for image contrast enhancement[J]. Image Processing, IEEE Transactions on, 2009, 18(9): 1921-1935.

二级参考文献40

  • 1陈武凡.彩色图像边缘检测的新算法[J].中国科学:A辑,1995,25(2):219-224.
  • 2杨煊.基于图像信息测度的多尺度边缘检测方法研究(博士学位论文)[M].西安交通大学,1998..
  • 3Zenzo S D, Cinque L, Levialdi S. Image Thresholding Using Fuzzy Entropies[J]. IEEE Tram on Syst Man, Cybem-part B, 1998, 28(1): 15-23.
  • 4范九伦.模糊熵理论[M].西安:西北大学出版社,1999..
  • 5钟义信,信息科学原理,1996年
  • 6谢维信,电子学报,1995年,13卷,5期,115页
  • 7杨煊,博士学位论文,1998年
  • 8W K Pratt.Digital image processing[C].2nd Edition.New York,USA:Wiley Interscience.1991.188-198.
  • 9S K Pal,R A King.On edge detection of X-Ray images using fuzzy sets[J].IEEE Trans Patt Anal and MachineIntell,1983,PAMI-5(1):69-77.
  • 10S K Pal,R A King.Image enhancement using fuzzy sets[J].Electron Lett,1980,16(9):376-378.

共引文献107

同被引文献27

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部