期刊文献+

多机无源跟踪迭代UKF算法 被引量:3

Iterated unscented Kalman filter algorithm for multi-plane passive tracking
下载PDF
导出
摘要 为利用多机实现对目标的快速高精度无源跟踪,提出了一种新的迭代无味卡尔曼滤波(unscented Kalman filter,UKF)算法。所提算法利用随机变量的概率密度函数变换,求得了直接关于目标状态的似然函数,并据此利用最大似然估计迭代求解当前时刻的目标状态,推导了能达到最大似然面的迭代求解准则,将该准则与UKF算法结合得到新的迭代UKF算法。以多机只测角跟踪为例,对所提算法的性能进行仿真分析,仿真结果表明,相对于已有的迭代UKF算法,所提算法具有更好的跟踪性能,实用性强。 A novel iterated unscented Kalman filter (UKF) is proposed to realize fast and high-precision passive tracking using multi-plane. The proposed algorithm gets the likelihood function directly with respect to the target state by the probability density function transformation of the random variable and the state is it- eratively solved using the maximum likelihood estimator based on it. The convergence criterion which can reach the maximum likelihood surface is derived and a novel iterated UKF algorithm is gotten by combining the criterion with the UKF algorithm. The multi plane bearing-only tracking is used as an example to ana lyze the performance of the proposed algorithm. Simulation results indicate that the proposed algorithm has better tracking performance compared with existing iterated UKF algorithms, which indicate its good appli cation prospect.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第2期220-223,共4页 Systems Engineering and Electronics
基金 航空电子系统综合技术重点实验室和航空科学基金(20105584004)联合资助 海军航空工程学院研究生创新基金资助课题
关键词 无源跟踪 迭代无味卡尔曼滤波 最大似然估计 只测角 passive tracking iterated unscented Kalrnan filter (UKF) maximum likelihood estimator bearing-only
  • 相关文献

参考文献15

  • 1Kutluyil D. UAV path planning for passive emitter localization[J].{H}IEEE Transactions on Aerospace and Electronic Systems,2012,(2):1150-1166.
  • 2Julier S,Uhlmann J,Durrant Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J].{H}IEEE Transactions on Automatic Control,2000,(3):477-482.
  • 3Closas P,Ferndndez Prades C,Vilà-Valls J. Multiple quadra ture Kalman filtering[J].{H}IEEE Transactions on Signal Processing,2012,(12):6125-6137.
  • 4Wu Y X,Hu D W,Wu M P. Unscented Kalman filter for additive noise case:augmented versus nonaugmented[J].{H}IEEE Signal Processing Letters,2005,(5):357-360.
  • 5Arasaratnam I,Haykin S. Cubature Kalman filters[J].{H}IEEE Transactions on Automatic Control,2009,(6):1254-1269.
  • 6Julier S J,Uhlmann J K. Unscented filtering and nonlinear esti mation[J].Proceeding of the IEEE,2004,(3):401-422.
  • 7Duník J,(S)imandl M,Straka O. Unscented Kalman filter:aspects and adaptive setting of scaling parameter[J].{H}IEEE Transactions on Automatic Control,2012,(9):2411-2416.
  • 8Zhan R H,Wan J W. Iterated unscented Kalman filter for pas sive target tracking[J].IEEE Trans on Aerospace and Elec tronic Systems,2007,(3):1155-1163.
  • 9张俊根,姬红兵.IMM迭代扩展卡尔曼粒子滤波跟踪算法[J].电子与信息学报,2010,32(5):1116-1120. 被引量:38
  • 10穆静,蔡远利.迭代容积卡尔曼滤波算法及其应用[J].系统工程与电子技术,2011,33(7):1454-1457. 被引量:43

二级参考文献39

  • 1杨争斌,郭福成,周一宇.迭代IMM机动目标被动单站跟踪算法[J].宇航学报,2008,29(1):304-310. 被引量:5
  • 2李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 3Mazor E,Averbuch A,and Bar-Shalom Y,et al..Interacting multiple model methods in target tracking:a survey[J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):103-123.
  • 4Kim Byung-doo and Lee Ja-sung.IMM algorithm based on the analytic solution of steady state Kalman filter for radar target tracking[C].IEEE International Radar Conference,Arlington,Virginia,USA,May,2005:757-762.
  • 5Cappe O,Godsill S J,and Moulines E.An overview of existing methods and recent advances in sequential Monte Carlo[J].Proceedings of the IEEE,2007,95(5):899-924.
  • 6Boers Y and Driessen J N.Interacting multiple model particle filter[J].IEE Proceedings-Radar Sonar Navigation,2003,150(5):344-349.
  • 7Morelande M R and Challa S.Maneuvering target tracking in clutter using particle filters[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(1):252-270.
  • 8Arulampalam M S,Maskell S,and Gordon N,et al..A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on SignalProcessing,2002,50(2):174-188.
  • 9Bell B M and Cathey F W.The iterated Kalman filter update as a Gauss-Newton method[J].IEEE Transactions on Automatic Control,1993,38(2):294-297.
  • 10Johnston L A and Krishnamurthy V.Derivation of a sawtooth iterated extended Kalman smoother via the AECM algorithm[J].IEEE Transactions on Signal Processing,2001,49(9):1899-1909.

共引文献77

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部