期刊文献+

输入非仿射不确定系统的跟踪控制 被引量:5

Track control of system with uncertainty and non-affine inputs
下载PDF
导出
摘要 针对一类不确定性输入非仿射的混沌系统,结合模糊逻辑系统、非线性跟踪微分器以及扩展状态观测器,利用反演技术设计了一种新的控制器。该设计中,扩展状态观测器用来估计系统中的未知项及扰动项;模糊逻辑系统用来逼近扩展状态器不能很好处理的未知项,并且设计了误差补偿项;非线性跟踪微分器用来逼近虚拟控制量的导数;然后利用Lyapunov稳定性理论证明了闭环误差信号将渐进收敛到原点的残集内。对具有扰动和不确定性的输入非仿射混沌系统进行了仿真,同时针对一类非严格反馈系统进行了仿真,结果表明了该方法的可行性和有效性。 A novel control scheme combining the fuzzy logic system, nonlinear track differentiator and ex- tended state observer (ESO) is presented for a class of nonlinear chaotic systems with non affine inputs and un- certainties based on backstepping. During the design procedure, the ESO is employed to estimate the uncertain- ties and disturbance in the system and the fuzzy logic system with additional error compensation term is used to approximate the unknown parts which cannot be dealt with by ESO. Meanwhile, the nonlinear track differentia- tor is adopted to approximate the derivative of the virtual control. Lyapunov stahihty analysis certi{ieates that the closed loop errors will asymptotically converge to arbitrary small region of origin point. Simulation results of chaotic systems with non-affine inputs, modeling uncertainties and external disturbances and simulation for non- linear cascaded system in reference illustrate the feasibility and effectiveness of the proposed method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第2期354-360,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61004002)资助课题
关键词 非仿射输入 不确定性 跟踪微分器 扩展状态观测器 反演设计 non-affine input uncertainty track differentiator extended state observer (ESO) backstep-ping design
  • 相关文献

参考文献20

  • 1Sun YJ. Generalized projective synchronization for a class of chaotic systems with parameter mismatching, unknown external excitation, and uncertain input nonlinearity[J]. Commun Non?linear Science and Numerical Simulation, 2011, 16(10): 3863 - 3870.
  • 2Mascolo S, Grassi G. Observers for hyperchaos synchronization with application to secure communications[CJ II Proc. of the IEEE International Conference on Control Applications, 1998: 1016 - 1020.
  • 3Haghighatdar F, Ataei M. Adaptive set-point tracking of the Lorenz chaotic system using non-linear feedback[J]. Chaos Soli?tons & Fractals, 2009,40(4):1938-1945.
  • 4Bagheri A, MoghaddamJ J. Decoupled adaptive neuro-fuzzy (DANF) sliding mode control system for a Lorenz chaotic pro?blem[J]. Expert Systems with Applications, 2009, 36 (3): 6062 - 6068.
  • 5Falahpoor M, Ataei M, Kiyoumarsi A. A chattering-free sliding mode control design for uncertain chaotic systems[J]. Chaos Solitons & Fractals, 2009, 42(3): 1755 -1765.
  • 6Wang H, Han Z Z, Xie Q Y, et a1. Sliding mode control for chaotic systems based on LMI[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4): 1410 -1417.
  • 7Zhou X B, Wu Y, Li v . et a1. Adaptive control and synchronization of a novel hyperchaotic system with uncertain parameters[J]. Ap?plied Mathematics and Computation, 2008, 203(1) :80 - 85.
  • 8YanJ J. Chang W D. LinJ S. et al. Adaptive chattering free variable structure control for a class of chaotic systems with un?known bounded uncertainties[J]. Physics Letter A. 2005. 335(4) :274 - 28l.
  • 9Chen F X. Chen L. Zhang W D. Stabilization of parameters pertur?bation chaotic system via adaptive backstepping technique[J]. Ap?plied Mathematics and Computation. 2008. 2000): 101 - 109.
  • 10Xie Q Y. Han Z Z. Kang HJ. Adaptive backstepping control for hybrid excitation synchronous machine with uncertain pa?rameters[J]. Expert Systems with Applications, 2010. 37(0): 7280 - 7284.

二级参考文献6

  • 1Kokotovic P, Arcak M. Constructive nonlinear control:A historical perspective [J]. Automatica, 2001,37 (5):637-662.
  • 2Slotine J E, Li W. Applied Nonlinear Control [M].Englewood Cliffs: Prentice Haill, 1991.
  • 3Seungrohk O H, Hassan K K. Nonlinear output feedback tracking using high-gain observer and variable structure control [J]. Automatica, 1997, 33 (10) : 1845-1856.
  • 4Ahmad N A, Hassan K K. A separation principle for the stabilization of a class of nonlinear systems [J].IEEE Trans on Automatic Control, 1999,44 (9): 1672-1687.
  • 5Rabah W, Ldhaheri A, Hassan K K. Effect of unmodeled actuator dynamics on output feedback stabilization of nonlinear systems[J]. Automatica,2001,37(9): 1323-1327.
  • 6Slotine J J E, Hedrick J K, Misawa E A. On sliding observers for nonlinear systems[J]. J of Dynamic Systems, Measurement and Control, 1987,109: 245-252.

共引文献21

同被引文献60

  • 1韩京清.自抗扰控制技术[J].前沿科学,2007,1(1):24-31. 被引量:468
  • 2韩京清,王伟.非线性跟踪─微分器[J].系统科学与数学,1994,14(2):177-183. 被引量:411
  • 3韩京清.自抗扰控制技术[M].北京:国防工业出版社.2008.
  • 4KANELLAKIPOULOS I, KOKOTOVIC P V, MORSE A S. Sys- tematic design of adaptive controllers for feedback linearizable sys- tems [J]. 1EEE Transactions on Automatic Control, 1991, 36(11): 1241 - 1253.
  • 5KRSTIC M, KANELLAKOPOULOS I, KOKOTOVIC P V. Adaptive nonlinear control without overparametrization [J]. Systems & Control Letters, 1992, 19(3): 177 - 185.
  • 6WANG L X. Adaptive Fuzzy Systems and Control: Design and Sta- bility Analysis [M]. New Jersey: Prentice Hall, 1994.
  • 7POLYCARPOU M M. Stable adaptive neural control scheme for non- linear systems [J]. IEEE Transactions on Automatic Control, 1996, 41(3): 447 - 451.
  • 8ZHANG T, GE S S, HANG C C. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design [J]. Automatica, 2000, 36(12): 1835 - 1846.
  • 9GE S S, WANG C. Adaptive NN control of uncertain nonlinear pure- feedback systems [J]. Automatica, 2002, 38(4): 671 - 682.
  • 10WANG D, HUANG J. Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedbackform [J]. Automatica, 2002, 38(8): 1365 - 1372.

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部