期刊文献+

面向多峰函数的自适应小生境量子进化算法 被引量:9

Adaptive niche quantum evolutionary algorithm for multimodal function
下载PDF
导出
摘要 为解决量子进化算法在多峰优化时只能找到一个最优解,无法找到所有全局和局部最优解的问题,提出自适应小生境量子进化算法。利用佳点集理论初始化种群,使种群均匀分布在整个搜索空间;提出中心地形信息小生境自适应识别方法,用于自适应的识别峰值所在区域,并建立小生境完善策略,提高小生境识别速度;借助量子进化算法的快速寻优能力精确寻找各个峰值点;采用动态种群调整策略,维持种群的多样性,自适应地调节种群规模。仿真实验结果表明,该算法具有较强全局优化能力和局部优化能力,且搜索到的每个最优解都达到了理想值。 Since it is difficult to find all the global and local optimal solutions in multimodal optimization problem for quantum evolutionary algorithm which can only find a global optimal solution, an adaptive niche quantum evolutionary algorithm is proposed. A good-point set is used to produce the initial population which is scattered uniformly over the entire search space. An adaptive niche identification method based on topographic center is designed to identify the extremum areas of the population adaptively, and a strategy of niche integrity is presented to increase the niche identification speed. The fast optimization ability of quantum evolutionary al- gorithm is applied to search extrema precisely. The strategy of dynamic population has been used to maintain diversity of population, and adjust the size of population adaptively. Simulation results show that the proposed algorithm has good glabal optimization performance and local extremum search ability and solutions are satisfactory.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第2期403-408,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(51205405)资助课题
关键词 多峰函数优化 佳点集 小生境技术 量子进化算法 multimodal function optimization; good points setl niching technology quantum evolutionaryalgorithm (QEA)
  • 相关文献

参考文献18

  • 1li P C,Song K P,Shang F H. Double chains quantum genetic algorithm with application to neuro-fuzzy controller design[J].{H}ADVANCES IN ENGINEERING SOFTWARE,2011,(10):875-886.
  • 2Mariani V C,Duck A R K,Guerra F A. A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers[J].{H}Applied Tnermal Engineering,2012,(12):119-128.
  • 3Gou S P,Zhuang X,Li Y Y. Multi-elitist immune elonal quantum clustering algorithm[J].Nerocomputing,2013,(2):275-289.
  • 4Bipul L,Ganesh V. Quantum inspired PSO for optimization of simultaneous recurrrent neural networks as MIMO learing sys tems[J].{H}NEURAL NETWORKS,2010,(5):583-586.
  • 5Wang Y Q,Zhou J Z,Mo L. A clonal real-coded quan tum-inspired evolutionary algorithm with Cauchy mutation for short-term hydrothermal generation scheduling[J].{H}Electrical Power and Energy Systems,2012,(1):1228-1240.
  • 6Wang Y Q,Zhou J Z,Mo L. Short-term hydrothermal generation scheduling using differential real coded quantum inspired evolutionary algorithm[J].{H}ENERGY,2012,(1):657-671.
  • 7Ling Q,Wu G,Yang Z Y. Crowding clustering genetic algorithm for multimodal function optimization[J].{H}Applied Soft Computing Journal,2008,(1):88-95.
  • 8毕晓君,王艳娇.用于多峰函数优化的小生境人工蜂群算法[J].系统工程与电子技术,2011,33(11):2564-2568. 被引量:25
  • 9Woo D K,Chou J H,Ali M. A novel muhimodal optimization algorithm applied to electromagnetic optimization[J].{H}IEEE Transactions on Magnetics,2011,(6):1667-1673.
  • 10Wang H F,Moon L,Yang S X. A memetic particle swarm optimization for multimodal optimization problems[J].{H}Information Sciences,2012,(15):38-52.

二级参考文献29

  • 1刘洪杰,王秀峰.多峰搜索的自适应遗传算法[J].控制理论与应用,2004,21(2):302-304. 被引量:23
  • 2张毅,杨秀霞.一种基于能量熵的快速遗传算法研究[J].系统工程理论与实践,2005,25(2):123-128. 被引量:7
  • 3杨孔雨,王秀峰.基于平衡峰值和梯度进化策略的多模态免疫算法[J].模式识别与人工智能,2006,19(2):167-172. 被引量:3
  • 4陈娟,徐立鸿.动态小生境遗传算法在多模函数优化中的应用[J].同济大学学报(自然科学版),2006,34(5):684-688. 被引量:7
  • 5Chelouah R, Siarry P. Genetic and Nelder-Mead Algorithms Hybridized for a More Accurate Global Optimization of Continuous Multiminima Functions. European Journal of Operational Research, 2003, 148(2) : 335 -348
  • 6Ling Qing, Wu Gang, Yang Zaiyue, et al. Crowding Clustering Genetic Algorithm for Multimodal Function Optimization. Applied Soft Computing, 2008, 8 ( 1 ) : 88 - 95
  • 7Wei Lingyun, Zhao Mei. A Niche Hybrid Genetic Algorithm for Global Optimization of Continuous Multimodal Functions. Applied Mathematics and Computation, 2005, 160(3) : 649 -661
  • 8Sareni B, Krahenbuhl L. Fitness Sharing and Niching Methods Revisited. IEEE Trans on Evolutionary Computation, 1995, 2 (3) : 97 - 106
  • 9Fukuda M T, Mari K, Tsukiyama M. Parallel Search for Multi-Modal Function Optimization with Diversity and Learning of Immune Algorithm// Dasgupta D, ed. Artificial Immune Systems and Their Applications. Berlin, Germany : Spring-Verlag, 1999 : 210 - 220
  • 10Lin C Y, Wu Wenhong. Niche Identification Techniques in Multimodal Genetic Search with Sharing Scheme. Advances in Engineering Software, 2002, 33( 11/12): 779-791

共引文献60

同被引文献125

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部