期刊文献+

轴对称环状静电模的漂移波湍流参量激发理论研究 被引量:2

Parametric excitation of axisymmetric toroidal electrostatic mode by drift wave turbulences
原文传递
导出
摘要 本文所论述的轴对称环状静电模是指环形磁约束等离子体(如托卡马克)中环向模数为零的近理想静电流体模,它包含有测地声模和基频率与之较低的声模;也含有所谓的‘近零频带状流’.本文根据冷离子流体模型在圆形磁面构成的准环坐标系中的表示,对涉及以上三种模式的漂移波湍流参量激发理论,在一级环形效应近似下,进行了系统讨论,并证明了带状流的四个新命题.利用对漂移波能谱的参数化描写,注意到由漂移波能谱径向有限宽度所引发的特性,如波能传播量的双Landau奇点,揭示了有限宽度对径向δ谱所得结果的重要修正:如,对近零频带状流和测地声模的参量激发条件带来的严格限制.此外,还讨论了密度带状流在高q条件下被激发的可能性.本文选用合理的物理参数.采用图示方法详细地讨论了有关的数值结果.分析表明,测地声模和近零频带状流的参量激发不可能发生在同一小半径处;如果测地声模被参量激发,也应能观察到密度带状流. The axisymmetric toroidal electrostatic mode discussed in this paper refers collectively to the nearly ideal electro- static fluid mode with zero toroidal mode number in magnetically confined toroidal plasmas like tokamak, including geodesic acoustic mode, sound waves and the so-called nearly zero-frequency zonal flow. Use is made of cold ion fluid model in the toroidal coordinate system with a circular cross section to develop the theory of parametric excitation for the three above mentioned modes systematically to the first order of inverse large aspect ratio, which ends up with the four following observations: (1) The density zonal flow is only associated with the excitation of the first harmonic cosine sound wave and is independent of the potential zonal flow. (2) The geodesic acoustic mode is the high frequency branch of the dispersion in the form of coupling between the first harmonic sine sound wave and the nearly zero-frequency zonal flow due to geodesic curvature, while the low frequency branch of the same dispersion is identified to be the 'toroidally modified nearly zero-frequency zonal flow'. (3) Only a weak coupling exists between the second harmonic sine sound wave and the nearly zero-frequency zonal flow. (4) All cosine sound waves and sine sound waves beyond the second harmonic are decoupled to the nearly zero-frequency zonal flow. A Gaussian type of drift wave energy spectrum with only a few parameters is introduced for calculation. Emphasis is laid on the effects resulting from the finite radial spectrum width such as double Landau-singularity, which reveal a significant modification to the 5-spectrum, thus resulting in serious restriction to the parametric excitation of geodesic acoustic mode and nearly zero-frequency zonal flow. Also discussed is the possibility of excitation of density zonal flow in the high q region. Numerical results are presented graphically and discussed in the reasonable physical regime. It is indicated that the geodesic acoustic mode and the nearly zero-frequency zonal flow cannot be parametrically excited at the same radii, and that if the geodesic acoustic mode is parametrically excited, the density zonal flow is expectedly to be observed.
作者 章扬忠 谢涛
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第3期304-315,共12页 Acta Physica Sinica
基金 ITER中国计划(批准号:2010GB107000) 国家自然科学基金(批准号:11075162) 国家磁约束聚变科学计划(批准号:2009GB101002)资助的课题~~
关键词 测地声模 近零频带状流 声模 托卡马克 geodesic acoustic mode, zero-frequency zonal flow, sound wave, tokamak
  • 相关文献

参考文献2

二级参考文献16

  • 1洪文玉,严龙文,王恩耀,李强,钱俊.HL-1M装置边缘等离子体结构研究[J].物理学报,2005,54(1):173-179. 被引量:4
  • 2洪文玉,严龙文,丛恕敏,钱俊.HL-2A装置快速扫描气动探针的研制和运用[J].核聚变与等离子体物理,2005,25(4):241-245. 被引量:3
  • 3Fujisawa A. A review of zonal flow experiments [J]. Nucl. Fusion, 2009, 49: 013001.
  • 4Hillesheim J C, Peebles W A, Carter T A, et al. Experimental investigation of geodesic acoustic mode spatial structure, intermittency, and interaction with turbulence in the DIII-D tokamak [J]. Phys. Plasmas, 2012, 19: 022301.
  • 5Conway G D, Angioni C, Ryter F, et al. Mean and oscillating plasma flows and turbulence interactions across the L-H confinement transition [J]. Phys. Rev. Lett., 2011, 106: 065001.
  • 6McKee G R, Gohil P, Schlossberg D J, et al. Dependence of the L- to H-mode power threshold on toroidal rotation and the link to edge turbulence dynamics [J]. Nucl. Fusion, 2009, 49:115016.
  • 7Zhang Y Z, Xie T, Mahajan S M. Analysis on the exclusiveness of turbulence suppression between static and time-varying shear flow [J]. Phys. Plasmas, 2012, 19: 020701.
  • 8Itoh K, Itoh S, Diamond P H, et al. Geodesic acoustic eigenmodes [J]. Plasma and Fusion Research, 2006, 1: 037.
  • 9Zonca F, Chen L. Radial structures and nonlinear excitation of geodesic acoustic modes [J]. EPL, 2008, 83: 35001.
  • 10Sasaki M, Itoh K, Ejiri A, et al. Radial eigenmodes of geodesic acoustic modes [J]. Contrib. Plasma Phys., 2008, 48: 68.

共引文献1

同被引文献37

  • 1Williams G P 1978 J. Atmosph. Sci. 35 1399.
  • 2Soomere T 1995 Phys. Rev. Lett. 75 2440.
  • 3陈冉, 刘阿娣, 邵明林, 胡广海, 金晓丽 2014 物理学报 63 185201.
  • 4Shi B R 2010 Chin. Phys. B 19 095201.
  • 5Baldwin M P, Rhines P B, Huang H P 2007 Science 315 467.
  • 6Maximenko N A, Bang B, Sasaki H 2005 Geophys. Res. Lett. 32 L12607.
  • 7van Sebille E, Kamenkovich I, Willis J K 2005 Geophys. Res. Lett. 38 L02606.
  • 8Ollitrault M, Lankhorst M, Fratantoni D, Richardson P, Zenk W 2006 Geophys. Res. Lett. 33 L05605.
  • 9Wang J B, Spall M A, Flierl G R, Malanotte-Rizzoli P 2012 Geophys. Res. Lett. 39 L10601.
  • 10Maximenko N A, Melnichenko O V, Niller P P, Sasaki H 2008 Geophys. Res. Lett. 35 L08603.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部