期刊文献+

一类具有饱和发生率和CTL免疫反应的HIV-1感染时滞模型的全局稳定性分析 被引量:4

Global Dynamics of an HIV-1 Infection Delayed Model with Saturation Incidence and CTL Immune Response
原文传递
导出
摘要 通过构造合适的Lyapunov函数证明了一类具有饱和发生率和CTL免疫反应的HIV-1感染时滞模型各可能平衡点的全局稳定性. In this paper,we investigate global dynamics of all the possible equilibria for an HIV-1 infection delayed model with saturation incidence and CTL immune response.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第2期173-180,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11271314) 信阳师范学院校青年基金(2013-QN-055)
关键词 再生数 平衡点 Lyapunov函数 全局稳定性 reproduction number equilibrium Lyapunov function global stability
  • 相关文献

参考文献8

  • 1Nowak M,Bangham C. Population dynamics of immune responses to persistent viruses[J].{H}SCIENCE,1996,(5258):74-79.
  • 2Zhu H,Zou X. Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay[J].Discrete and Continuous Dynamical Systems Series B,2009,(2):511-524.
  • 3Song X,U.Avidan. Global stability and periodic solution of the viral dynamics[J].{H}Journal of Mathematical Analysis and Applications,2007,(1):281-297.
  • 4Yukihiko Nakata. Global dynamics of a cell mediated immunity in viral infection models with distributed delays[J].J Math Anal Appl,2011.14-27.
  • 5Hale J K. Theory of Functional Differential Equations[M].Springer,NewYork,1997.
  • 6McCluskey C C. Complete global stability for an SIR epidemic model with delaydistributed or discrete[J].Nonlinear Anal RWA,2010.55-59.
  • 7Huang G,Takeuchi Y,Ma W. Lyapunov functionals for Delay differential equations model for viral infections[J].{H}SIAM Journal on Applied Mathematics,2010,(7):2693-2708.
  • 8Hale J K,Verduyn Lunel S. Introduction to Functional Differential Equations[A].Springer,New York,NY,USA,1993.

同被引文献27

  • 1庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 2李超,伏圣博,刘华玲,马欣荣.细胞凋亡研究进展[J].世界科技研究与发展,2007,29(3):45-53. 被引量:74
  • 3NOWAK M A, BONHOEKER S, HILL A M, et al. Viral Dynamics in Hepatitis B Virus In{ection[J]. Proc Natl Acad Sci USA, 1996, 93(9): 4398-4402.
  • 4WANG Xiu-nan, WANG Wen-di. An HIV Infection Model Based on a Vectored Immunoprophylaxis Experiment [J]. J Theor Biol, 2012, 313 : 127-135.
  • 5SONG Xin-yu, AVIDAN U N. Global Stability and Periodic Solution of the Viral Dynamics [J]. J Math Anal Appl, 2007, 329: 281-297.
  • 6GOVIND P S, JOYDIP D. Analysis of an SVEIS Epidemic Model with Partial Temporary Immunity and Saturation Inci- dence Rate [J]. Applied Mathematical Modelling, 2012, 36: 908-923.
  • 7NOWAK M A, BANGHAM C R M. Population dynamics responses to persistent viruses EJ~. Science, 1996, 272: 74-79.
  • 8BONHOEFFER S, COFFIN J M, NOWAK M A. Human immunodeficiency virus drug therapy and virus load[-J~. J Virol, 1997, 71:3275 3278.
  • 9SATO H, ORENSTEIN J, DIMITROV D, et al. Cell-to- cell spread of HIV-I occurs with minutes and may not involve the participation of virus particlesEJ~. Virology, 1992, 186: 712-724.
  • 10GUMMULURU S, KINSEY C M, EMERMAN M. An in vitro rapid-turnover assay for human immunodeficiency virus type 1 replication selects for cell to cell spread of virusEJ~. J Virol, 2000, 74 : 10882-10891.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部