期刊文献+

受扰不确定混沌系统的降阶修正函数投影同步 被引量:3

Reduced-Order Modified Function Projective Synchronization of Chaotic System with Disturbances and Uncertainties
原文传递
导出
摘要 研究了具有不同阶数的受扰不确定混沌系统的降阶修正函数投影同步问题.基于Lyapunov稳定性理论和自适应控制方法,设计了统一的非线性状态反馈控制器和参数更新规则,使得混沌响应系统按照相应的函数尺度因子矩阵和混沌驱动系统的部分状态变量实现同步.方法考虑了实际系统中的模型不确定性和外界扰动,具有较强的实用性和鲁棒性.数值仿真证明了控制方法的有效性. The reduced-order modified function projective synchronization of uncertain chaotic systems with different orders is discussed in this paper.Based on Lyapunov stability theory and adaptive control method,the nonlinear state feedback controller and adaptive update laws are designed,by which the chaotic response system can synchronize to part states of the chaotic drive system by a desired scaling function matrix.The proposed controller has strong practicality and robustness since it is beyond the impact of model uncertainty and external perturbation.Numerical simulations demonstrate the effectiveness of the proposed controller.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第2期216-222,共7页 Mathematics in Practice and Theory
关键词 混沌系统 降阶修正函数投影同步 自适应 不确定 外界扰动 chaotic system reduced-order modified function projective synchronization adaptive uncertainty disturbance
  • 相关文献

参考文献14

  • 1邓玮,胡涛,李明伟,吴振军,吴艳敏,谢泽会.含有不确定项的混沌系统自适应广义同步[J].数学的实践与认识,2012,24(7):112-118. 被引量:2
  • 2Ho Ming-chung, Hung Yao-chen, Liu Zhi-yu et al with parameters unknown[J]. Phys Lett A, 2006 Reduced-order synchronization of chaotic systems 348(3-6): 251-260.
  • 3Moukam Kakmeni F M, Bowong S, Tchawoua C. Reduced-order synchronization of uncertain chaotic systems via adaptive control[J]. Communications in Nonlinear Science and Numerical Simulation, 2006, 11(6): 810-830.
  • 4Vincent U E, Rongwei Guo. A simple adaptive control for full and reduced-order Synchronization of uncertain time-varying chaotic systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(10): 3925-3932.
  • 5Mossa M, Al-sawalha, Noorani M S M. Chaos reduced order anti-synchronization of chaotic systems with fully unknown parameters[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 17(4): 1908-1920.
  • 6李冠林,陈希有,刘凤春,牟宪民.Observer based projective reduced-order synchronization of different chaotic systems[J].Journal of Harbin Institute of Technology(New Series),2010,17(5):697-700. 被引量:1
  • 7苗清影,唐漾,钟恢凰,谷小婧,方建安.随机干扰下降阶时延混沌系统的自适应广义投影同步(英文)[J].系统仿真学报,2009,21(1):204-207. 被引量:1
  • 8Sebastian K, Sudheer M Sabir. Adaptive modified function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters[J]. Physics Letters A, 2009, 373(41): 3743-3748.
  • 9Guiyuan. Robust adaptive modi?ed function projective synchronization of different hyperchaotic systems subject to external disturbance[J]. Commun Nonlinear Sci Numer Simulat, 2012, 17(6): 2602-2608.
  • 10Sebastian Sudheer K, Sabir M. Modified function projective synchronization of hyperchaotic systems through Open-Plus-Closed-Loop coupling[J]. Physics Letters A, 2010, 374 (19-20): 2017-2023.

二级参考文献81

  • 1陈志盛,孙克辉,张泰山.Liu混沌系统的非线性反馈同步控制[J].物理学报,2005,54(6):2580-2583. 被引量:77
  • 2姚利娜,高金峰,廖旎焕.实现混沌系统同步的非线性状态观测器方法[J].物理学报,2006,55(1):35-41. 被引量:32
  • 3王兴元,刘明.具有扇区非线性和死区的多输入Lorenz系统的滑模控制[J].计算物理,2007,24(1):121-126. 被引量:2
  • 4L M Perora, T L Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. (S0031-9007), 1990, 64(8): 821-824.
  • 5M G Rosenblum, A S Pikovsky, J Kurths. Phase synchronization of chaotic oscillators, Phys. Rev. Lett. (S0031-9007), 1996, 76(11): 1804-1807.
  • 6Y Chen, X X Chen, S S Gu. Lag synchronization of structurally non- equivalent chaotic systems with time delays, Nonlinear Anal (S0362- 546X), 2007, 66(9): 1929-1937.
  • 7S Taherion, Y C Lai. Observability of lag synchronization of coupled chaotic oscillators, Phys. Rev. E (S1063-651X), 1999, 59: 6247-6250.
  • 8N F Rulkov, M M Sushehik, L S Tsimring. Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E (S1063-651X), 1995, 51: 980-994.
  • 9R Mainieri, J Rehacek. Projective synchronization in three- dimensional chaotic systems, Phys. Rev. Lett. (S0031-9007), 1999, 82(15): 3042-3045.
  • 10G H Li, S P Zhou, Y Kui. Generalized projective synchronization between two different chaotic systems using active backstepping control, Phys. Lett. A (S0375-9601), 2006, 355(4-5): 326-330.

共引文献14

同被引文献22

  • 1刘扬正,费树岷.Sprott-B和Sprott-C系统之间的耦合混沌同步[J].物理学报,2006,55(3):1035-1039. 被引量:26
  • 2刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2005:514.
  • 3刘扬正,姜长生.线性反馈控制新的4维超混沌系统同步[J].四川大学学报(工程科学版),2007,39(6):138-142. 被引量:10
  • 4YU Y G,LI H X,WANG S.Dynamic analysis of a fractionalorder Lorenz chaotic system[J].Chaos,Solitons&Fractals,2009,42(2):1181-1189.
  • 5WU X J,WANG H,LU H T.Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application in secure communication[J].Nonlinear Analysis:Real World Applications,2012,13(3):1441-1450.
  • 6GAO T G,CHEN Z Q,YUAN Z Z,YU D C.Adaptive synchronization of a new hyperchaotic system with uncertain parameters[J].Chaos,Solitons&Fractals,2007,33:922-928.
  • 7SUN W G,YANG Y Y,LI C P,et al.Synchronization inside complex dynamical networks with double time-delays and nonlinear inner-coupling functions[J].International Journal of Modern Physics B,2011,25:1531-1541.
  • 8XU D L,LENG Ong WEE,LI Z G.Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension[J].Physical Letters A,2002,35:167-172.
  • 9DIETHELM K,FORD N J,FREED A D.A Predictor-Corrector approach for the numerical solution of fractional differential equations[J].Nonlinear Dynamics,2002,29:3-22.
  • 10Carrol T L,Pecora L M.Synchronization in Chaotic Systems[J].Physics Review Letters,1990,64(8):821-824.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部