期刊文献+

so(5,k)主不可分解模的Loewy序列

The Lowey Series of Principle indecomposable Modules for So(5,K)
原文传递
导出
摘要 设k是特征为素数的代数闭域,李代数g=so(5,k).当p-特征函数χ为次正则幂零且具有标准Levi型时,得到g的主不可分解模的Lowey序列. Let k be an algebraically closed field of prime characteristic,Lie algebra g =so(5,k).In this paper,when p-character x is sub-regular nilpotent and has standard Levi form,the Lowey series of principle indecomposable g-modules were given.
作者 李宜阳
出处 《数学的实践与认识》 CSCD 北大核心 2014年第2期252-261,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(11126062 11201293 11271130)
关键词 次正则幂零 主不可分解模 Loewy序列 标准Levi型 sub-regular nilpotent principle indecomposable module Loewy series standard Levi form
  • 相关文献

参考文献10

  • 1Verma D N. Structure of Cerntain Induced Representationof Complex Semisimple Lie Algebras[J].{H}Bull Amer Math Soc,1968.160-168.
  • 2Bernstein I N,Gel'fand I M,Gel'fand S I. Structure of Representation generated by vectors of highest weight[J].{H}Functional Anal Appl,1971.1-9.
  • 3Bernstein I N,Gel'fand I M,Gel'fand S I. Diffferential operators on the base affine space and a study of g-modules[A].Hilger,London,1975.21-64.
  • 4Humphreys J. Modular representations of classical Lie algebras and semisimple groups[J].{H}Journal of Algebra,1971.51-79.
  • 5Jantzen J C. Representations of Lie algebras in prime characteristic[A].Kluwer,Dordrecht,1998.85-235.
  • 6Friedlander E M,Parshall B. Modular representation theory of Lie algebras[J].{H}AMERICAN JOURNAL OF MATHEMATICS,1988,(110):1055-1093.
  • 7Jantzen J C. Subregular nilpotent representations of sln and so2n+1[J].{H}Mathematical Proceedings of the Cambridge Philosophical Society,1999.223-257.
  • 8Li Yiyang,Shu Bin,Yao yufeng. Self Extensions of Simple Modules in Subregular Nilpotent Representations of sln(k) and so2n+1 (k)[J].
  • 9Andersen H H,Kaneda M. Filtrations on G1T-modules[J].Proc Londen Math Soc,2001.614-646.
  • 10Li Yiyang,Shu Bin. Filtrations in modular representations of reductive lie algebras[J].{H}Algebra Colloquium,2010,(2):265-282.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部