期刊文献+

无和数列的倒数和 被引量:2

On the reciprocal sum of sum-free sequences
原文传递
导出
摘要 设A={a1,a2,...}是一个严格递增的正整数数列,如果每一个an都不能写成它前面一些不同项的和,则称A为无和数列.令ρ(A)=∑∞k=11ak.1962年,Erds证明了,对任意无和数列A,有ρ(A)<103.1977年,Levine和O’Sullivan改进为ρ(A)<3.9998.最近,Chen进一步改进为ρ(A)<3.0752.本文证明了,对于无和数列A={a1,a2,...}(a1<a2<···),当a12时,有ρ(A)<2.526. Let A = {al,a2,...} be a strictly increasing sequence of positive integers. A is called a sum-free 1 1 sequence if no ai is the sum of two or more distinct earlier terms. The number pρ(A)=∑∞k=1 1/ak is called the reciprocal sum of A. In 1962, Erd6s proved that ρ(A) 〈 103 for any sum-free sequence A. In 1977, Levine and O'Sullivan improved this considerably to ρ(A) 〈 3.9998. Recently, Chen improved it to p(A) 〈 3.0752. In this note, we prove that, for any sum-free sequence A = {a1,a2,...} with 2 ≤ a1 〈 a2 〈 ..., we have p(A) 〈 2.526.
作者 吴建东
出处 《中国科学:数学》 CSCD 北大核心 2014年第2期117-126,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11371195) 江苏省高校自然科学研究项目(批准号:13KJD110005)资助项目
关键词 无和数列 K数列 Erd6s倒数和常数 sum-free sequence κ-sequence ErdSs reciprocal sum constants
  • 相关文献

参考文献1

二级参考文献7

  • 1Abbott H L. On sum-free sequences. Acta Arith, 1987, 48: 93-6.
  • 2Erd?s P. Remarks in number theory III: Some problems in additive number theory. Mat Lapok, 1962, 13: 28-8.
  • 3Guy R K. Unsolved Problems in Number Theory. Third Edition, E28. New York: Springer-Verlag, 2004.
  • 4Levine E, O'ullivan J. An upper estimate for the reciprocal sum of a sum-free sequence. Acta Arith, 1977, 34: 9-4.
  • 5Yang S C. Note on the reciprocal sum of a sum-free sequence. J Math Res Exposition, 2009, 29: 753-55.
  • 6http://mathworld.wolfram.com/A-Sequence.html.
  • 7http://mathworld.wolfram.com/ErdosReciprocalSumConstants.html.

共引文献3

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部