期刊文献+

Comparison of electrical characteristic between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes

Comparison of electrical characteristic between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes
下载PDF
导出
摘要 Ni/Au Schottky contacts on A1N/GaN and A1GaN/GaN heterostructures are fabricated. Based on the measured current-voltage and capacitance-voltage curves, the electrical characteristics of AlN/GaN Schottky diode, such as Schottky barrier height, turn-on voltage, reverse breakdown voltage, ideal factor, and the current-transport mechanism, are analyzed and then compared with those of an A1GaN/GaN diode by self-consistently solving Schrodinger's and Poisson's equations. It is found that the dislocation-governed tunneling is dominant for both AlN/GaN and AlGaN/GaN Schottky diodes. However, more dislocation defects and a thinner barrier layer for AlN/GaN heterostrncture results in a larger tunneling probability, and causes a larger leakage current and lower reverse breakdown voltage, even though the Schottky barrier height of AlN/GaN Schottky diode is calculated to be higher that of an A1GaN/GaN diode. Ni/Au Schottky contacts on A1N/GaN and A1GaN/GaN heterostructures are fabricated. Based on the measured current-voltage and capacitance-voltage curves, the electrical characteristics of AlN/GaN Schottky diode, such as Schottky barrier height, turn-on voltage, reverse breakdown voltage, ideal factor, and the current-transport mechanism, are analyzed and then compared with those of an A1GaN/GaN diode by self-consistently solving Schrodinger's and Poisson's equations. It is found that the dislocation-governed tunneling is dominant for both AlN/GaN and AlGaN/GaN Schottky diodes. However, more dislocation defects and a thinner barrier layer for AlN/GaN heterostrncture results in a larger tunneling probability, and causes a larger leakage current and lower reverse breakdown voltage, even though the Schottky barrier height of AlN/GaN Schottky diode is calculated to be higher that of an A1GaN/GaN diode.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期421-425,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos.60890192,60876009,and 11174182)
关键词 Al(Ga)N/GaN Schottky barrier height current-transport mechanism leakage current Al(Ga)N/GaN, Schottky barrier height, current-transport mechanism, leakage current
  • 相关文献

参考文献18

  • 1Polyakov A Y, Smimov N B, Govorkov A V, Markov A V, Yugova T G, Dabiran A M, Wowchak A M, Cui B, Osinsky A V, Chow P P, Pearton S J, Scherbatchev K D and Bublik V T 2008 J. Appl. Phys. 104 053702.
  • 2Feng Q, Xing T, Wang Q, Feng Q, Li Q, Bi Z W, Zhang J C and Hao Y 2012 Chin. Phys. B. 21 017304.
  • 3Ji D, Liu B, Lu Y W, Zou M and Fan B L 2012 Chin. Phys. B 21 067201.
  • 4Shinohara K, Regan D, Cordon A, Brown D, Burnham S, Willadsen P J, Alvarado-Rodriguez I, Cunningham M, Butler C, Schmitz A, Kim S, Holden B, Chang D, Lee V, Ohoka A, Asbeck P M and Micovic M 20111EDM Tech. Dig. 19.1.1.
  • 5Cen L B, Shen B, Qin Z X and Zhang G Y 2009 Chin. Phys. B 18 3905.
  • 6Shinohara K, Regan D, Corrion A, Brown D, Tang Y, Wong J, Candia G, Schmitz A, Fung H, Kim S and Micovic M 2012 IEDM Tech. Dig. 27.2.1.
  • 7Zhao Z J, Lin Z J, Corrigan T D, Wang Z, You Z D and Wang Z G 2007 Appl. Phys. Lett. 91 173507.
  • 8Chert C H, Baier S M, Arch D K and Shur M S 1988 IEEE Trans. Electron Dev. 35 570.
  • 9Lti Y J, Lin Z J, Meng L G, Yu Y X, Luan C B, Cao Z E Chen H, Sun B Q and Wang Z G 2011 Appl. Phys. Lett. 99 1235.
  • 10Cao Z F, Lin Z J, Li.i Y J, Luan C B, Yu Y X, Chen H and Wang Z G 2012 Chin. Phys. B 21 017103.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部