期刊文献+

变分框架下的多尺度图像恢复与重建 被引量:5

Multiscale Image Restoration and Reconstruction in the Framework of Variation
下载PDF
导出
摘要 变分图像分解,通过极小化能量泛函将图像分解为不同的特征分量,可以被应用到图像的恢复和重建.提出了变分框架下的多尺度图像恢复和重建的思想.基于这种思想,首先提出了一个单参数的(BV,G,E)三元变分分解模型,并且理论分析了参数与不同特征分量的尺度的关系.然后将此模型的参数选为一个二进制序列,得到多尺度的(BV,G,E)变分分解.该多尺度变分分解可以将图像分解为一序列图像结构、纹理和噪声.证明了此多尺度分解的收敛性并且基于对偶理论和交替迭代算法给出了其数值求解方法.最后将提出的多尺度的(BV,G,E)变分分解应用到图像恢复和重建,实验结果证实了理论分析的正确性,显示了将此模型进行图像多尺度恢复和重建的有效性,和与一些其他分解模型相比较的优越性. By minimizing the energy functional ,we can obtain the variational image decomposition which decomposes image into different characteristic components ,and can be used for image restoration and reconstruction .An idea of multiscale image restoration and reconstruction in the framework of variation is proposed .Based on this idea ,firstly ,a single-parameter (BV ,G ,E ) trituple decomposition model is proposed ,and the relationship between the parameter and the scale of each component is studied the-oretically .And then ,by replacing the parameter with a binary sequence ,we achieve a multiscale (BV ,G ,E) decomposition which can decompose an image into a sequence of image structure ,texture and noise .The convergence of this multiscale decomposition is proved ,and an efficient numerical method based on the duality theory and alternate iteration algorithm is introduced to solve it .At last ,the proposed multiscale (BV ,G ,E ) decomposition is applied for image restoration and reconstruction .Numerical results sup-port the theoretical results and show that the proposed model is efficient for multiscale image restoration and reconstruction ,and is superior to some other decomposition models .
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第12期2353-2360,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61004118)
关键词 变分图像分解 图像恢复 图像重建 对偶 多尺度 variational image decomposition image restoration image reconstruction duality multiscale
  • 相关文献

参考文献3

二级参考文献32

  • 1BAI Jian FENG Xiangchu.Digital ridgelet reconstruction based on local dual frame[J].Science in China(Series F),2005,48(6):782-794. 被引量:2
  • 2LI Min FENG Xiangchu.Wavelet Shrinkage and a New Class of Variational Models Based on Besov Spaces and Negative Hilbert-Sobolev Spaces[J].Chinese Journal of Electronics,2007,16(2):276-280. 被引量:5
  • 3Y. Meyer. Oscillating patterns in image processing and nonlin- ear evolution equations. American Mathematical Society, 2001.
  • 4M. Nikolova. Weakly constrained minimization: application to the estimation of images and signals involving constant re- gions. Journal of Mathematical Imaging and Vision, 2004, 21 (2): 155-175.
  • 5Y. Chen, S. Levine, M. Rao. Variable exponent, linear growth functionals in image processing. SIAM Journal of Numerical Analysis, 2006, 66 (4): 1383-1406.
  • 6J. E Aujol, A. Chambolle. Dual norms and image decomposi- tion models. International Journal on Computer Vision, 2005, 63 (4): 85-104.
  • 7T. M. Le, L. Vese. Image decomposition using total varia- tion and div(BMO). Multiscale Modeling and Simulation, 2005, 4(2): 390-423.
  • 8Y. Gousseau, J. M. Morel. Are natural images of bounded vari- ation. SlAM Journal of Numerical Analysis, 2001, 33 (3): 634- 648.
  • 9L. I. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60 (14): 259-268.
  • 10D. Mumford, J. Shah. Optimal approximations by piecewise smooth functions and variational problem. Communications on Pure and Applied Mathematics, 1989, 42 (5): 577-685.

共引文献2

同被引文献45

  • 1张红英,彭启琮.数字图像修复技术综述[J].中国图象图形学报,2007,12(1):1-10. 被引量:159
  • 2Vogel Curtis R. Computational Methods for Inverse Problems [ M]. Philadelphia, Pennsylvania: Society for Industrial and Ap- plied Mathematics,2002.1 - 183.
  • 3Aubert G, Kornprobst Pierre. Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations[ M ]. New York, USA: Springer-Verlag, 2006.1 - 371.
  • 4Liu X W,Huang L H, Guo Z Y. Adaptive fourth-order partial differential equation filter for image denoising [ J ]. Applied Mathematics Letters, 2011,24 (8) : 1282 - 1288.
  • 5Dykes L,Reichel L. Simplified GSVD computations for the so- lution of linear discrete iU-posed problems[ J] .Journal of Com- putational and Applied Mathematics, 2014,255( 1 ) : 15 - 27.
  • 6Beck Amir, Teboulle Marc. A fast dual proximal gradient algo- rithm for convex minimization and applications[ J]. Operations Research Letters,2014,42( 1 ) : 1 - 6.
  • 7Duran Joan, Coll Bartomeu, Sbert Catalina. Chambolle' s pro- jection algorithm for total variation denoising[ J]. Image Pro- cessing on Line,2013,2013(3) :301 - 321.
  • 8Dai Y H, Kou C X. A nonlinear conjugate gradient algorithm with an optimal property and an improved wolfe line search [ J] .SIAM Journal on Optimization,2013,23(1) :296- 320.
  • 9Sun Wenyu, Yuan Yaxiang. Optimization Theory and Methods Nonlinear Programming[M]. New York, USA: Springer Sci- ence Business Media,2006,1 - 687.
  • 10Bai zhengiian, Donatelli Marco, Capizzano Stefano Serra. Fast preconditioners for total variation deblurring with anti-reflec- tive boundary conditions[ J]. SIAM Journal on Matrix Analysis and Applications,2011,32(3) :785 - 805.

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部